Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 60(4): 388-398, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30335480

RESUMO

Genome-wide association studies (GWAS) have identified multiple associations with emphysema apicobasal distribution (EABD), but the biological functions of these variants are unknown. To characterize the functions of EABD-associated variants, we integrated GWAS results with 1) expression quantitative trait loci (eQTL) from the Genotype Tissue Expression (GTEx) project and subjects in the COPDGene (Genetic Epidemiology of COPD) study and 2) cell type epigenomic marks from the Roadmap Epigenomics project. On the basis of these analyses, we selected a variant near ACVR1B (activin A receptor type 1B) for functional validation. SNPs from 168 loci with P values less than 5 × 10-5 in the largest GWAS meta-analysis of EABD were analyzed. Eighty-four loci overlapped eQTL, with 12 of these loci showing greater than 80% likelihood of harboring a single, shared GWAS and eQTL causal variant. Seventeen cell types were enriched for overlap between EABD loci and Roadmap Epigenomics marks (permutation P < 0.05), with the strongest enrichment observed in CD4+, CD8+, and regulatory T cells. We selected a putative causal variant, rs7962469, associated with ACVR1B expression in lung tissue for additional functional investigation, and reporter assays confirmed allele-specific regulatory activity for this variant in human bronchial epithelial and Jurkat immune cell lines. ACVR1B expression levels exhibit a nominally significant association with emphysema distribution. EABD-associated loci are preferentially enriched in regulatory elements of multiple cell types, most notably T-cell subsets. Multiple EABD loci colocalize to regulatory elements that are active across multiple tissues and cell types, and functional analyses confirm the presence of an EABD-associated functional variant that regulates ACVR1B expression, indicating that transforming growth factor-ß signaling plays a role in the EABD phenotype. Clinical trial registered with www.clinicaltrials.gov (NCT00608764).


Assuntos
Receptores de Ativinas Tipo I/genética , Predisposição Genética para Doença/genética , Enfisema Pulmonar/genética , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular Tumoral , Estudo de Associação Genômica Ampla , Humanos , Células Jurkat , Pulmão/patologia , Polimorfismo de Nucleotídeo Único/genética , Estudo de Prova de Conceito , Locos de Características Quantitativas/genética , Subpopulações de Linfócitos T/imunologia
2.
Am J Respir Cell Mol Biol ; 56(6): 738-748, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28199134

RESUMO

Bioenergetics homeostasis is important for cells to sustain normal functions and defend against injury. The genetic controls of bioenergetics homeostasis, especially lipid metabolism, remain poorly understood in chronic obstructive pulmonary disease (COPD), the third leading cause of death in the world. Additionally, the biological function of most of the susceptibility genes identified from genome-wide association studies (GWASs) in COPD remains unclear. Here, we aimed to address (1) how fatty acid oxidation (FAO), specifically ß-oxidation, a key lipid metabolism pathway that provides energy to cells, contributes to cigarette smoke (CS)-induced COPD; and (2) whether-and if so, how-FAM13A (family with sequence similarity 13 member A), a well-replicated COPD GWAS gene, modulates the FAO pathway. We demonstrated that CS induced expression of carnitine palmitoyltransferase 1A (CPT1A), a key mitochondrial enzyme for the FAO pathway, thereby enhancing FAO. Pharmacological inhibition of FAO by etomoxir blunted CS-induced reactive oxygen species accumulation and cell death in lung epithelial cells. FAM13A promoted FAO, possibly by interacting with and activating sirutin 1, and increasing expression of CPT1A. Furthermore, CS-induced cell death was reduced in lungs from Fam13a-/- mice. Our results suggest that FAM13A, the COPD GWAS gene, shapes the cellular metabolic response to CS exposure by promoting the FAO pathway, which may contribute to COPD development.


Assuntos
Ácidos Graxos/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Acetilação , Animais , Brônquios/patologia , Carnitina O-Palmitoiltransferase/metabolismo , Morte Celular , Respiração Celular , Células Epiteliais/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Inativação Gênica , Humanos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Oxirredução , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Fumar/efeitos adversos
3.
Proc Natl Acad Sci U S A ; 113(32): E4681-7, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27444019

RESUMO

Genetic variants in Hedgehog interacting protein (HHIP) have consistently been associated with the susceptibility to develop chronic obstructive pulmonary disease and pulmonary function levels, including the forced expiratory volume in 1 s (FEV1), in general population samples by genome-wide association studies. However, in vivo evidence connecting Hhip to age-related FEV1 decline and emphysema development is lacking. Herein, using Hhip heterozygous mice (Hhip(+/-)), we observed increased lung compliance and spontaneous emphysema in Hhip(+/-) mice starting at 10 mo of age. This increase was preceded by increases in oxidative stress levels in the lungs of Hhip(+/-) vs. Hhip(+/+) mice. To our knowledge, these results provide the first line of evidence that HHIP is involved in maintaining normal lung function and alveolar structures. Interestingly, antioxidant N-acetyl cysteine treatment in mice starting at age of 5 mo improved lung function and prevented emphysema development in Hhip(+/-) mice, suggesting that N-acetyl cysteine treatment limits the progression of age-related emphysema in Hhip(+/-) mice. Therefore, reduced lung function and age-related spontaneous emphysema development in Hhip(+/-) mice may be caused by increased oxidative stress levels in murine lungs as a result of haploinsufficiency of Hhip.


Assuntos
Proteínas de Transporte/genética , Enfisema/etiologia , Haploinsuficiência , Glicoproteínas de Membrana/genética , Acetilcisteína/farmacologia , Fatores Etários , Animais , Glutationa/metabolismo , Glutationa S-Transferase pi/fisiologia , Pulmão/patologia , Pulmão/fisiologia , Complacência Pulmonar , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo
4.
Am J Respir Crit Care Med ; 194(2): 185-97, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26862784

RESUMO

RATIONALE: A genetic locus within the FAM13A gene has been consistently associated with chronic obstructive pulmonary disease (COPD) in genome-wide association studies. However, the mechanisms by which FAM13A contributes to COPD susceptibility are unknown. OBJECTIVES: To determine the biologic function of FAM13A in human COPD and murine COPD models and discover the molecular mechanism by which FAM13A influences COPD susceptibility. METHODS: Fam13a null mice (Fam13a(-/-)) were generated and exposed to cigarette smoke. The lung inflammatory response and airspace size were assessed in Fam13a(-/-) and Fam13a(+/+) littermate control mice. Cellular localization of FAM13A protein and mRNA levels of FAM13A in COPD lungs were assessed using immunofluorescence, Western blotting, and reverse transcriptase-polymerase chain reaction, respectively. Immunoprecipitation followed by mass spectrometry identified cellular proteins that interact with FAM13A to reveal insights on FAM13A's function. MEASUREMENTS AND MAIN RESULTS: In murine and human lungs, FAM13A is expressed in airway and alveolar type II epithelial cells and macrophages. Fam13a null mice (Fam13a(-/-)) were resistant to chronic cigarette smoke-induced emphysema compared with Fam13a(+/+) mice. In vitro, FAM13A interacts with protein phosphatase 2A and recruits protein phosphatase 2A with glycogen synthase kinase 3ß and ß-catenin, inducing ß-catenin degradation. Fam13a(-/-) mice were also resistant to elastase-induced emphysema, and this resistance was reversed by coadministration of a ß-catenin inhibitor, suggesting that FAM13A could increase the susceptibility of mice to emphysema development by inhibiting ß-catenin signaling. Moreover, human COPD lungs had decreased protein levels of ß-catenin and increased protein levels of FAM13A. CONCLUSIONS: We show that FAM13A may influence COPD susceptibility by promoting ß-catenin degradation.


Assuntos
Predisposição Genética para Doença/genética , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , beta Catenina/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estabilidade Proteica , Transdução de Sinais , beta Catenina/genética , beta Catenina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA