Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542344

RESUMO

Natural products have been a long-standing source for exploring health-beneficial components from time immemorial. Modern science has had a renewed interest in natural-products-based drug discovery. The quest for new potential secondary metabolites or exploring enhanced activities for existing molecules remains a pertinent topic for research. Resveratrol belongs to the stilbenoid polyphenols group that encompasses two phenol rings linked by ethylene bonds. Several plant species and foods, including grape skin and seeds, are the primary source of this compound. Resveratrol is known to possess potent anti-inflammatory, antiproliferative, and immunoregulatory properties. Among the notable bioactivities associated with resveratrol, its pivotal role in safeguarding the intestinal barrier is highlighted for its capacity to prevent intestinal inflammation and regulate the gut microbiome. A better understanding of how oxidative stress can be controlled using resveratrol and its capability to protect the intestinal barrier from a gut microbiome perspective can shed more light on associated physiological conditions. Additionally, resveratrol exhibits antitumor activity, proving its potential for cancer treatment and prevention. Moreover, cardioprotective, vasorelaxant, phytoestrogenic, and neuroprotective benefits have also been reported. The pharmaceutical industry continues to encounter difficulties administering resveratrol owing to its inadequate bioavailability and poor solubility, which must be addressed simultaneously. This report summarizes the currently available literature unveiling the pharmacological effects of resveratrol.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Polifenóis/farmacologia , Suplementos Nutricionais , Neoplasias Colorretais/tratamento farmacológico
2.
Microrna ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37873952

RESUMO

BACKGROUND: Breast cancer is one of the leading causes of cancer deaths in women. Early diagnosis offers the best hope for a cure. Ductal carcinoma in situ is considered a precursor of invasive ductal carcinoma of the breast. In this study, we carried out microRNA sequencing from 7 ductal carcinoma in situ (DCIS), 6 infiltrating ductal carcinomas (IDC Stage IIA) with paired normal, and 5 unpaired normal breast tissue samples. We identified 76 miRNAs that were differentially expressed in DCIS and IDC. METHODS: Additionally, we provide preliminary evidence of miR-365b-3p and miR-7-1-3p being overexpressed, and miR-6507-5p, miR-487b-3p, and miR-654-3p being downregulated in DCIS relative to normal breast tissue. We also identified a miRNA miR-766-3p that was overexpressed in early-stage IDCs. The overexpression of miR-301a-3p in DCIS and IDC was confirmed in 32 independent breast cancer tissue samples. RESULTS: Higher expression of miR-301a-3p is associated with poor overall survival in The Can-cer Genome Atlas Breast Cancer (TCGA-BRCA) dataset, indicating that it may be associated with DCIS at high risk of progressing to IDC and warrants deeper investigation. CONCLUSION: We also analyzed competing endogenous networks associated with differentially expressed miRNAs and identified LRRC75A-AS1 and MAGI2-AS3 as lncRNAs that potentially play an important role in early-stage breast cancers.

3.
Front Pharmacol ; 14: 1274076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745056

RESUMO

[This corrects the article DOI: 10.3389/fphar.2023.1159409.].

4.
Front Pharmacol ; 14: 1159409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397502

RESUMO

Programmed cell death (PCD) is the universal process that maintains cellular homeostasis and regulates all living systems' development, health and disease. Out of all, apoptosis is one of the major PCDs that was found to play a crucial role in many disease conditions, including cancer. The cancer cells acquire the ability to escape apoptotic cell death, thereby increasing their resistance towards current therapies. This issue has led to the need to search for alternate forms of programmed cell death mechanisms. Paraptosis is an alternative cell death pathway characterized by vacuolation and damage to the endoplasmic reticulum and mitochondria. Many natural compounds and metallic complexes have been reported to induce paraptosis in cancer cell lines. Since the morphological and biochemical features of paraptosis are much different from apoptosis and other alternate PCDs, it is crucial to understand the different modulators governing it. In this review, we have highlighted the factors that trigger paraptosis and the role of specific modulators in mediating this alternative cell death pathway. Recent findings include the role of paraptosis in inducing anti-tumour T-cell immunity and other immunogenic responses against cancer. A significant role played by paraptosis in cancer has also scaled its importance in knowing its mechanism. The study of paraptosis in xenograft mice, zebrafish model, 3D cultures, and novel paraptosis-based prognostic model for low-grade glioma patients have led to the broad aspect and its potential involvement in the field of cancer therapy. The co-occurrence of different modes of cell death with photodynamic therapy and other combinatorial treatments in the tumour microenvironment are also summarized here. Finally, the growth, challenges, and future perspectives of paraptosis research in cancer are discussed in this review. Understanding this unique PCD pathway would help to develop potential therapy and combat chemo-resistance in various cancer.

5.
Cancers (Basel) ; 15(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37444412

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a heterogeneous cancer associated with a poor prognosis in advanced stages. In India, it is the sixth most common cause of cancer-related mortality. In this study, we employed high-resolution mass spectrometry-based quantitative proteomics to characterize the differential protein expression pattern associated with ESCC. We identified several differentially expressed proteins including PDPN, TOP2A, POSTN and MMP2 that were overexpressed in ESCC. In addition, we identified downregulation of esophagus tissue-enriched proteins such as SLURP1, PADI1, CSTA, small proline-rich proteins such as SPRR3, SPRR2A, SPRR1A, KRT4, and KRT13, involved in squamous cell differentiation. We identified several overexpressed proteins mapped to the 3q24-29 chromosomal region, aligning with CNV alterations in this region reported in several published studies. Among these, we identified overexpression of SOX2, TP63, IGF2BP2 and RNF13 that are encoded by genes in the 3q26 region. Functional enrichment analysis revealed proteins involved in cell cycle pathways, DNA replication, spliceosome, and DNA repair pathways. We identified the overexpression of multiple proteins that play a major role in alleviating ER stress, including SYVN1 and SEL1L. The SYVN1/SEL1L complex is an essential part of the ER quality control machinery clearing misfolded proteins from the ER. SYVN1 is an E3 ubiquitin ligase that ubiquitinates ER-resident proteins. Interestingly, there are also other non-canonical substrates of SYVN1 which are known to play a crucial role in tumor progression. Thus, SYVN1 could be a potential therapeutic target in ESCC.

6.
J Cell Commun Signal ; 17(3): 1089-1095, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36715855

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) signals through a multi-component receptor system predominantly consisting of glycosyl-phosphatidylinositol-anchored GDNF family receptor alpha-1 (GFRα1) and the Rearranged during transfection (RET) receptor tyrosine kinase. GDNF/RET signaling is vital to the central and peripheral nervous system, kidney morphogenesis, and spermatogenesis. In addition, the dysregulation of the GDNF/RET signaling has been implicated in the pathogenesis of cancers. Despite the extensive research on GDNF/RET signaling, a molecular network of reactions induced by GDNF reported across the published literature. However, a comprehensive GDNF/RET pathway resource is currently unavailable. We describe an integrated signaling pathway reaction map of GDNF/RET consisting of 1151 molecular reactions. These include information pertaining to 52 molecular association events, 70 enzyme catalysis events, 36 activation/inhibition events, 22 translocation events, 856 gene regulation events, and 115 protein-level expression events induced by GDNF in diverse cell types. We developed a comprehensive GDNF/RET signaling network map based on these molecular reactions. The pathway map was made accessible through WikiPathways database ( https://www.wikipathways.org/index.php/Pathway:WP5143 ). Biocuration and development of gene regulatory network map of GDNF/RET signaling pathway.

7.
Genes (Basel) ; 13(11)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36360315

RESUMO

Systems genetics is key for integrating a large number of variants associated with diseases. Vitamin K (VK) is one of the scarcely studied disease conditions. In this work, we ascertained the differentially expressed genes (DEGs) and variants associated with individual subpopulations of VK disease phenotypes, viz., myocardial infarction, renal failure and prostate cancer. We sought to ask whether or not any DEGs harbor pathogenic variants common in these conditions, attempt to bridge the gap in finding characteristic biomarkers and discuss the role of long noncoding RNAs (lncRNAs) in the biogenesis of VK deficiencies.


Assuntos
Neoplasias da Próstata , RNA Longo não Codificante , Deficiência de Vitamina K , Humanos , Masculino , Vitamina K , RNA Longo não Codificante/genética , Biomarcadores
8.
Mikrochim Acta ; 189(9): 327, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35951246

RESUMO

A silver-manganese nanocomposite was successfully prepared by the urea hydrolysis method and used to detect chloride ions in sweat electrochemically. The synthesis involves the reaction of manganese sulphate, silver nitrate, and urea at 100 °C for 24 h. The crystalline nature of the particle was studied by diffraction analysis and found to be mixed-phase oxides of manganese alongside the oxides of silver. Morphological studies revealed the presence of quasi-prism-like structures, which is characteristic of ß-MnO2. A disposable sensor was fabricated by screen-printing the catalyst and used for the electrochemical detection of chloride ions in sweat. The sensor exhibited good selectivity, a sensitivity of 22.93 ± 0.64 µA mM-1 cm-2 in solution and 3010 ± 60 µA (log mM) -1 cm-2 for the fabricated sensor strip with a detection range from 5 mM up to 200 mM. The detection limit is 207 ± 7 µM (S/N = 3) in solution and 17 ± 6 µM for the fabricated sensor strip. The relative standard deviation (RSD) of sensor response is 2.38%. A prototype of the biosensor strip was fabricated and validated using real samples. This brings the possibility of developing a real-time biosensor strip for cystic fibrosis in point-of-care testing applications.


Assuntos
Técnicas Biossensoriais , Fibrose Cística , Nanocompostos , Técnicas Biossensoriais/métodos , Carbono/química , Cloretos/análise , Eletrodos , Humanos , Manganês , Compostos de Manganês/química , Óxidos/química , Ureia
9.
Sci Rep ; 12(1): 3966, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273218

RESUMO

Tamarixetin, a flavonoid derived from Quercetin, was shown to possess anti-cancer properties in various types of cancer. However, the mechanism of action of this compound is not well understood. Observations from reverse docking and network pharmacology analysis, were validated by cell based studies to analyse the chemotherapeutic potential and elucidate the molecular mechanism of action of Tamarixetin in breast cancer. In silico analysis using reverse docking and PPI analysis clearly indicated that out of 35 proteins targeted by Tamarixetin, the top 3 hub genes, namely, AKT1, ESR1 and HSP90AA1, were upregulated in breast tumor tissues and more importantly showed strong negative correlation to breast cancer patient survival. Furthermore, the KEGG pathway analysis showed enrichment of target proteins of Tamarixetin in 33 pathways which are mainly involved in neoplastic signalling. In vitro cell-based studies demonstrated that Tamarixetin could inhibit cell proliferation, induce ROS and reduce mitochondrial membrane potential, leading to cell death. Tamarixetin induced cell cycle arrest at G2/M phase and inhibited the migration as well as the invasion of breast cancer cells. Taken together, the combination of in silico and in vitro approaches used in the present study clearly provides evidence for the chemotherapeutic potential of Tamarixetin in breast cancer.


Assuntos
Neoplasias da Mama , Medicamentos de Ervas Chinesas , Neoplasias da Mama/tratamento farmacológico , Dissacarídeos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Humanos , Simulação de Acoplamento Molecular , Quercetina/análogos & derivados , Quercetina/farmacologia , Quercetina/uso terapêutico
10.
OMICS ; 25(12): 770-781, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34807729

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a systemic disease affecting not only the lungs but also multiple organ systems. Clinical studies implicate that SARS-CoV-2 infection causes imbalance of cellular homeostasis and immune response that trigger cytokine storm, oxidative stress, thrombosis, and insulin resistance. Mathematical modeling can offer in-depth understanding of the SARS-CoV-2 infection and illuminate how subcellular mechanisms and feedback loops underpin disease progression and multiorgan failure. We report here a mathematical model of SARS-CoV-2 infection pathway network with cytokine storm, oxidative stress, thrombosis, insulin resistance, and nitric oxide (NO) pathways. The biochemical systems theory model shows autocrine loops with positive feedback enabling excessive immune response, cytokines, transcription factors, and interferons, which can imbalance homeostasis of the system. The simulations suggest that changes in immune response led to uncontrolled release of cytokines and chemokines, including interleukin (IL)-1ß, IL-6, and tumor necrosis factor α (TNFα), and affect insulin, coagulation, and NO signaling pathways. Increased production of NETs (neutrophil extracellular traps), thrombin, PAI-1 (plasminogen activator inhibitor-1), and other procoagulant factors led to thrombosis. By analyzing complex biochemical reactions, this model forecasts the key intermediates, potential biomarkers, and risk factors at different stages of COVID-19. These insights can be useful for drug discovery and development, as well as precision treatment of multiorgan implications of COVID-19 as seen in systems medicine.


Assuntos
COVID-19/imunologia , Síndrome da Liberação de Citocina/imunologia , Resistência à Insulina/imunologia , Óxido Nítrico/imunologia , Estresse Oxidativo/imunologia , SARS-CoV-2/imunologia , Trombose/imunologia , COVID-19/virologia , Síndrome da Liberação de Citocina/virologia , Citocinas/imunologia , Humanos , Modelos Teóricos , Transdução de Sinais/imunologia , Trombose/virologia
11.
Foods ; 10(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34828830

RESUMO

Value-added phytochemicals from food by-products and waste materials have gained much interest and among them, dietary polyphenolic compounds with potential biological properties extend a promising sustainable approach. Oxyresveratrol (Oxy), a stilbenoid polyphenol, possesses great therapeutic potential, though its pharmacokinetic issues need attention. A good source of oxyresveratrol was found in underutilized coconut shells and the synbiotic applications of the compound in combination with a potential probiotic isolate Limosilactobacillus fermentum ASBT-2 was investigated. The compound showed lower inhibitory effects on the strain with minimum inhibitory concentration (MIC) of 1000 µg/mL. Oxyresveratrol at sub-MIC concentrations (500 µg/mL and 250 µg/mL) enhanced the probiotic properties without exerting any inhibitory effects on the strain. The combination at sub- MIC concentration of the compound inhibited Salmonella enterica and in silico approaches were employed to elucidate the possible mode of action of oxy on the pathogen. Thus, the combination could target pathogens in the gut without exerting negative impacts on growth of beneficial strains. This approach could be a novel perspective to address the poor pharmacokinetic properties of the compound.

12.
Front Oncol ; 11: 660696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136393

RESUMO

Oral squamous cell carcinoma (OSCC) is a common cancer of the oral cavity in India. Cigarette smoking and chewing tobacco are known risk factors associated with OSCC. However, genomic alterations in OSCC with varied tobacco consumption history are not well-characterized. In this study, we carried out whole-exome sequencing to characterize the mutational landscape of OSCC tumors from subjects with different tobacco consumption habits. We identified several frequently mutated genes, including TP53, NOTCH1, CASP8, RYR2, LRP2, CDKN2A, and ATM. TP53 and HRAS exhibited mutually exclusive mutation patterns. We identified recurrent amplifications in the 1q31, 7q35, 14q11, 22q11, and 22q13 regions and observed amplification of EGFR in 25% of samples with tobacco consumption history. We observed genomic alterations in several genes associated with PTK6 signaling. We observed alterations in clinically actionable targets including ERBB4, HRAS, EGFR, NOTCH1, NOTCH4, and NOTCH3. We observed enrichment of signature 29 in 40% of OSCC samples from tobacco chewers. Signature 15 associated with defective DNA mismatch repair was enriched in 80% of OSCC samples. NOTCH1 was mutated in 36% of samples and harbored truncating as well as missense variants. We observed copy number alterations in 67% of OSCC samples. Several genes associated with non-receptor tyrosine kinase signaling were affected in OSCC. These molecules can serve as potential candidates for therapeutic targeting in OSCC.

13.
OMICS ; 25(4): 255-268, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33794113

RESUMO

Tobacco abuse is a major risk factor associated with the development of oral squamous cell carcinoma. Differences in molecular aberrations induced by tobacco exposure by chewing or smoking form are not well studied in case of oral cancer. We used tandem mass tag-based quantitative proteomic approach to delineate proteomic alterations in oral cancer patients based on their history of tobacco using habits (patients who chewed tobacco, patients who smoked tobacco, and those with no history of tobacco consumption). Our data identified distinct dysregulation of biological processes and pathways in each patient cohort. Bioinformatics analysis of dysregulated proteins identified in our proteomic study revealed dysregulation of collagen formation and antigen processing/presentation pathway in oral cancer patients who smoked tobacco, whereas proteins associated with the process of keratinization showed enrichment in patients who chewed tobacco. In addition, we identified overexpression of proteins involved in immune pathways and downregulation of muscle contraction-mediated signaling events in all three cohorts, irrespective of tobacco using habits. This study lays the groundwork for identification of protein markers that may aid in identification of high-risk patients for cancer development based on the history of tobacco exposure habits.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Hábitos , Humanos , Neoplasias Bucais/genética , Proteômica , Fatores de Risco , Nicotiana
14.
Cells ; 10(3)2021 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670899

RESUMO

DKK3 is a secreted protein, which belongs to a family of Wnt antagonists and acts as a potential tumor suppressor in gallbladder cancer. To further understand its tumor suppressor functions, we overexpressed DKK3 in 3 GBC cell lines. We have employed high-resolution mass spectrometry and tandem mass tag (TMT) multiplexing technology along with immobilized metal affinity chromatography to enrich phosphopeptides to check the downstream regulators. In this study, we reported for the first time the alteration in the phosphorylation of 14 kinases upon DKK3 overexpression. In addition, we observed DKK3 induced hyper phosphorylation of 2 phosphatases: PPP1R12A and PTPRA, which have not been reported previously. Canonical pathway analysis of altered molecules indicated differential enrichment of signaling cascades upon DKK3 overexpression in all the 3 cell lines. Protein kinase A signaling, Sirtuin signaling pathway, and Cell Cycle Control of Chromosomal Replication were observed to be differentially activated in the GBC cell lines. Our study revealed, DKK3 overexpression has differential effect based on the aggressive behavior of the cell lines. This study expands the understanding of DKK3-mediated signaling events and can be used as a primary factor for understanding the complex nature of this molecule.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Vesícula Biliar/genética , Proteômica/métodos , Humanos , Transdução de Sinais , Transfecção
15.
Eur J Pharmacol ; 893: 173808, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33345858

RESUMO

Flavonoids possess a broad spectrum of pharmacological properties, including anti-cancer, anti-oxidant and immunomodulatory activities. The current study explored the potential of some less-studied flavonoids in inhibiting Matrix Metalloproteinase-9 (MMP-9), a prominent biomarker, upregulated in a variety of cancers and known to promote migration and invasion of cancer cells. Amongst these, Tamarixetin, a naturally occurring flavonoid derivative of Quercetin, demonstrated significant dose-dependent inhibition of MMP-9 expression. Furthermore, a substantial inhibition of migration, invasion and clonogenic potential of HT1080 cells was also observed in the presence of Tamarixetin, which further suggests its role as a potential anti-cancer agent. It is noteworthy that Tamarixetin inhibits nuclear translocation as well the activity of nuclear factor kappa B (NFκB), both of which are functions essential for the activation of MMP-9 in promoting tumorigenesis. Additionally, the endogenous regulators of MMP-9 that tightly control its activity were also modulated by Tamarixetin, as evident from the 1.9 fold increase in the expression of Tissue Inhibitor of Metalloproteinase-1 (TIMP-1), with a concomitant 2.2 fold decrease in Matrix Metalloproteinase-14 (MMP-14) expression. The results obtained were further corroborated in three dimensional (3D) tumor models, which showed significant inhibition of MMP-9 activity as well as reduced invasive potential in the presence of Tamarixetin. Taken together, our observations demonstrate for the first time, the anti-invasive potential of Tamarixetin in cancer cells, indicating its possible use as a template for novel therapeutic applications.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Dissacarídeos/farmacologia , Fibrossarcoma/tratamento farmacológico , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , NF-kappa B/metabolismo , Quercetina/análogos & derivados , Células A549 , Transporte Ativo do Núcleo Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Fibrossarcoma/enzimologia , Fibrossarcoma/genética , Fibrossarcoma/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Metaloproteinase 9 da Matriz/genética , NF-kappa B/genética , Invasividade Neoplásica , Quercetina/farmacologia , Transdução de Sinais , Esferoides Celulares
16.
Nutr Cancer ; 73(1): 147-159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31690139

RESUMO

The rhizome of ginger (Zingiber officinale) a common culinary agent is also known for its medicinal activity. We have earlier reported that pure 6-shogaol, an important component of ginger induces paraptosis in triple negative breast cancer (MDA-MB-231) and non small cell lung (A549) cancer cells. However, the chemopreventive potential of the whole ginger extract in food remains to be elucidated. Here, we demonstrate for the first time that ginger extract (GE) triggers similar anticancer activity/paraptosis against the same cell lines but through different molecular mechanisms. Q-TOF LC-MS analysis of the extract showed the presence of several other metabolites along with 6-shogaol and 6-gingerol. GE induces cytoplasmic vacuolation through ER stress and dilation of the ER. Drastic decrease in the mitochondrial membrane potential and ATP production along with the excess generation of ROS contributed to mitochondrial dysfunction. Consequently, GE caused the translocation of apoptosis inducing factor to the nucleus leading to the fragmentation of DNA. Taken together, these show a novel mechanism for ginger extract induced cancer cell death that can be of potential interest for cancer preventive strategies.


Assuntos
Caspases , Neoplasias , Zingiber officinale , Catecóis , Dano ao DNA , Mitocôndrias , Extratos Vegetais
17.
Mol Cell Biochem ; 476(2): 819-829, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33090336

RESUMO

Disruption of the finely tuned osteoblast-osteoclast balance is the underlying basis of several inflammatory bone diseases, such as osteomyelitis, osteoporosis, and septic arthritis. Prolonged and unrestrained exposure to inflammatory environment results in reduction of bone mineral density by downregulating osteoblast differentiation. Earlier studies from our laboratory have identified that Anacardic acid (AA), a constituent of Cashew nut shell liquid that is used widely in traditional medicine, has potential inhibitory effect on gelatinases (MMP2 and MMP9) which are over-expressed in numerous inflammatory conditions (Omanakuttan et al. in Mol Pharmacol, 2012 and Nambiar et al. in Exp Cell Res, 2016). The study demonstrated for the first time that AA promotes osteoblast differentiation in lipopolysaccharide-treated osteosarcoma cells (MG63) by upregulating specific markers, like osteocalcin, receptor activator of NF-κB ligand, and alkaline phosphatase. Furthermore, expression of the negative regulators, such as nuclear factor-κB, matrix metalloproteinases (MMPs), namely MMP13, and MMP1, along with several inflammatory markers, such as Interleukin-1ß and Nod-like receptor protein 3 were downregulated by AA. Taken together, AA expounds as a novel template for development of potential pharmacological therapeutics for inflammatory bone diseases.


Assuntos
Ácidos Anacárdicos/farmacologia , Doenças Ósseas/tratamento farmacológico , Inflamassomos/antagonistas & inibidores , Osteoblastos/efeitos dos fármacos , Osteocalcina/agonistas , Ligante RANK/agonistas , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Inflamassomos/metabolismo , NF-kappa B/antagonistas & inibidores , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Ligante RANK/metabolismo
18.
Cell Biol Int ; 45(1): 164-176, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33049087

RESUMO

Chalcones are biologically active class of compounds, known for their anticancer activities. Here we show for the first time that out of the six synthetic derivatives of chalcone tested, 2'-hydroxy-retrochalcone (HRC) was the most effective in inducing extensive cytoplasmic vacuolation mediated death called paraptosis in malignant breast and cervical cancer cells. The cell death by HRC is found to be nonapoptotic in nature due to the absence of DNA fragmentation, PARP cleavage, and phosphatidylserine externalization. It was also found to be nonautophagic as there was an increase in the levels of autophagic markers LC3I, LC3II and p62. Immunofluorescence with the endoplasmic reticulum (ER) marker protein calreticulin showed that the cytoplasmic vacuoles formed were derived from the ER. This ER dilation was due to ER stress as evidenced from the increase in polyubiquitinated proteins, Bip and CHOP. Docking studies revealed that HRC could bind to the Thr1 residue on the active site of the chymotrypsin-like subunit of the proteasome. The inhibition of proteasomal activity was further confirmed by the fluorescence based assay of the chymotrypsin-like subunit of the 26S proteasome. The cell death by HRC was also triggered by the collapse of mitochondrial membrane potential and depletion of ATP. Pretreatment with thiol antioxidants and cycloheximide were able to inhibit this programmed cell death. Thus our data suggest that HRC can effectively kill cancer cells via paraptosis, an alternative death pathway and can be a potential lead molecule for anticancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Células 3T3-L1 , Animais , Antineoplásicos/farmacologia , Antioxidantes/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Chalconas/química , Humanos , Concentração Inibidora 50 , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Compostos de Sulfidrila/metabolismo
19.
Front Oncol ; 10: 1666, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33251127

RESUMO

Though smoking remains one of the established risk factors of esophageal squamous cell carcinoma, there is limited data on molecular alterations associated with cigarette smoke exposure in esophageal cells. To investigate molecular alterations associated with chronic exposure to cigarette smoke, non-neoplastic human esophageal epithelial cells were treated with cigarette smoke condensate (CSC) for up to 8 months. Chronic treatment with CSC increased cell proliferation and invasive ability of non-neoplastic esophageal cells. Whole exome sequence analysis of CSC treated cells revealed several mutations and copy number variations. This included loss of high mobility group nucleosomal binding domain 2 (HMGN2) and a missense variant in mediator complex subunit 1 (MED1). Both these genes play an important role in DNA repair. Global proteomic and phosphoproteomic profiling of CSC treated cells lead to the identification of 38 differentially expressed and 171 differentially phosphorylated proteins. Bioinformatics analysis of differentially expressed proteins and phosphoproteins revealed that most of these proteins are associated with DNA damage response pathway. Proteomics data revealed decreased expression of HMGN2 and hypophosphorylation of MED1. Exogenous expression of HMGN2 and MED1 lead to decreased proliferative and invasive ability of smoke exposed cells. Immunohistochemical labeling of HMGN2 in primary ESCC tumor tissue sections (from smokers) showed no detectable expression while strong to moderate staining of HMGN2 was observed in normal esophageal tissues. Our data suggests that cigarette smoke perturbs expression of proteins associated with DNA damage response pathways which might play a vital role in development of ESCC.

20.
Front Oncol ; 10: 1457, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974170

RESUMO

Esophageal squamous cell carcinoma (ESCC) is the most common histological subtype of esophageal cancer in India. Cigarette smoking and chewing tobacco are known risk factors associated with ESCC. However, genomic alterations associated with ESCC in India are not well-characterized. In this study, we carried out exome sequencing to characterize the mutational landscape of ESCC tumors from subjects with a varied history of tobacco usage. Whole exome sequence analysis of ESCC from an Indian cohort revealed several genes that were mutated or had copy number changes. ESCC from tobacco chewers had a higher frequency of C:G > A:T transversions and 2-fold enrichment for mutation signature 4 compared to smokers and non-users of tobacco. Genes, such as TP53, CSMD3, SYNE1, PIK3CA, and NOTCH1 were found to be frequently mutated in Indian cohort. Mutually exclusive mutation patterns were observed in PIK3CA-NOTCH1, DNAH5-ZFHX4, MUC16-FAT1, and ZFHX4-NOTCH1 gene pairs. Recurrent amplifications were observed in 3q22-3q29, 11q13.3-q13.4, 7q22.1-q31.1, and 8q24 regions. Approximately 53% of tumors had genomic alterations in PIK3CA making this pathway a promising candidate for targeted therapy. In conclusion, we observe enrichment of mutation signature 4 in ESCC tumors from patients with a history of tobacco chewing. This is likely due to direct exposure of esophagus to tobacco carcinogens when it is chewed and swallowed. Genomic alterations were frequently observed in PIK3CA-AKT pathway members independent of the history of tobacco usage. PIK3CA pathway can be potentially targeted in ESCC which currently has no effective targeted therapeutic options.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA