Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
EMBO J ; 40(6): e106524, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33604931

RESUMO

Cholesterol is essential for cell physiology. Transport of the "accessible" pool of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) by ER-localized GRAMD1 proteins (GRAMD1a/1b/1c) contributes to cholesterol homeostasis. However, how cells detect accessible cholesterol within the PM remains unclear. We show that the GRAM domain of GRAMD1b, a coincidence detector for anionic lipids, including phosphatidylserine (PS), and cholesterol, possesses distinct but synergistic sites for sensing accessible cholesterol and anionic lipids. We find that a mutation within the GRAM domain of GRAMD1b that is associated with intellectual disability in humans specifically impairs cholesterol sensing. In addition, we identified another point mutation within this domain that enhances cholesterol sensitivity without altering its PS sensitivity. Cell-free reconstitution and cell-based assays revealed that the ability of the GRAM domain to sense accessible cholesterol regulates membrane tethering and determines the rate of cholesterol transport by GRAMD1b. Thus, cells detect the codistribution of accessible cholesterol and anionic lipids in the PM and fine-tune the non-vesicular transport of PM cholesterol to the ER via GRAMD1s.


Assuntos
Transporte Biológico/genética , Membrana Celular/metabolismo , Colesterol/metabolismo , Proteínas de Membrana/metabolismo , Substituição de Aminoácidos/genética , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Predisposição Genética para Doença/genética , Células HeLa , Humanos , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Fosfatidilserinas/metabolismo , Mutação Puntual/genética , Domínios Proteicos
3.
Mol Biol Cell ; 31(19): 2115-2124, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32614659

RESUMO

Mammalian P4-ATPases specifically localize to the plasma membrane and the membranes of intracellular compartments. P4-ATPases contain 10 transmembrane domains, and their N- and C-terminal (NT and CT) regions face the cytoplasm. Among the ATP10 and ATP11 proteins of P4-ATPases, ATP10A, ATP10D, ATP11A, and ATP11C localize to the plasma membrane, while ATP10B and ATP11B localize to late endosomes and early/recycling endosomes, respectively. We previously showed that the NT region of ATP9B is critical for its localization to the Golgi apparatus, while the CT regions of ATP11C isoforms are critical for Ca2+-dependent endocytosis or polarized localization at the plasma membrane. Here, we conducted a comprehensive analysis of chimeric proteins and found that the NT region of ATP10 proteins and the CT region of ATP11 proteins are responsible for their specific subcellular localization. Importantly, the ATP10B NT and the ATP11B CT regions were found to harbor a trafficking and/or targeting signal that allows these P4-ATPases to localize to late endosomes and early/recycling endosomes, respectively. Moreover, dileucine residues in the NT region of ATP10B were required for its trafficking to endosomal compartments. These results suggest that the NT and CT sequences of P4-ATPases play a key role in their intracellular trafficking.


Assuntos
Membrana Celular/metabolismo , ATPases do Tipo-P/metabolismo , Domínios Proteicos , Sequência de Aminoácidos , Endossomos/metabolismo , Células HeLa , Humanos , ATPases do Tipo-P/química , Transporte Proteico
4.
J Cell Sci ; 132(17)2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31371488

RESUMO

ATP11C, a member of the P4-ATPase family, is a major phosphatidylserine (PS)-flippase located at the plasma membrane. ATP11C deficiency causes a defect in B-cell maturation, anemia and hyperbilirubinemia. Although there are several alternatively spliced variants derived from the ATP11C gene, the functional differences between them have not been considered. Here, we compared and characterized three C-terminal spliced forms (we designated as ATP11C-a, ATP11C-b and ATP11C-c), with respect to their expression patterns in cell types and tissues, and their subcellular localizations. We had previously shown that the C-terminus of ATP11C-a is critical for endocytosis upon PKC activation. Here, we found that ATP11C-b and ATP11C-c did not undergo endocytosis upon PKC activation. Importantly, we also found that ATP11C-b localized to a limited region of the plasma membrane in polarized cells, whereas ATP11C-a was distributed on the entire plasma membrane in both polarized and non-polarized cells. Moreover, we successfully identified LLXY residues within the ATP11C-b C-terminus as a critical motif for the polarized localization. These results suggest that the ATP11C-b regulates PS distribution in distinct regions of the plasma membrane in polarized cells.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Células 3T3-L1 , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Polaridade Celular/fisiologia , Citoplasma/metabolismo , Endocitose , Ativação Enzimática , Células HCT116 , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos , Isoformas de Proteínas , Proteína Quinase C/metabolismo , Células RAW 264.7
5.
J Biol Chem ; 294(6): 1794-1806, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30530492

RESUMO

Lipid transport is an essential process with manifest importance to human health and disease. Phospholipid flippases (P4-ATPases) transport lipids across the membrane bilayer and are involved in signal transduction, cell division, and vesicular transport. Mutations in flippase genes cause or contribute to a host of diseases, such as cholestasis, neurological deficits, immunological dysfunction, and metabolic disorders. Genome-wide association studies have shown that ATP10A and ATP10D variants are associated with an increased risk of diabetes, obesity, myocardial infarction, and atherosclerosis. Moreover, ATP10D SNPs are associated with elevated levels of glucosylceramide (GlcCer) in plasma from diverse European populations. Although sphingolipids strongly contribute to metabolic disease, little is known about how GlcCer is transported across cell membranes. Here, we identify a conserved clade of P4-ATPases from Saccharomyces cerevisiae (Dnf1, Dnf2), Schizosaccharomyces pombe (Dnf2), and Homo sapiens (ATP10A, ATP10D) that transport GlcCer bearing an sn2 acyl-linked fluorescent tag. Further, we establish structural determinants necessary for recognition of this sphingolipid substrate. Using enzyme chimeras and site-directed mutagenesis, we observed that residues in transmembrane (TM) segments 1, 4, and 6 contribute to GlcCer selection, with a conserved glutamine in the center of TM4 playing an essential role. Our molecular observations help refine models for substrate translocation by P4-ATPases, clarify the relationship between these flippases and human disease, and have fundamental implications for membrane organization and sphingolipid homeostasis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Adenosina Trifosfatases/química , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Transporte Biológico Ativo , Glucosilceramidas/química , Glucosilceramidas/metabolismo , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese Sítio-Dirigida , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
6.
EMBO J ; 37(9)2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29599178

RESUMO

P4-ATPases are phospholipid flippases that translocate phospholipids from the exoplasmic/luminal to the cytoplasmic leaflet of biological membranes. All P4-ATPases in yeast and some in other organisms are required for membrane trafficking; therefore, changes in the transbilayer lipid composition induced by flippases are thought to be crucial for membrane deformation. However, it is poorly understood whether the phospholipid-flipping activity of P4-ATPases can promote membrane deformation. In this study, we assessed membrane deformation induced by flippase activity via monitoring the extent of membrane tubulation using a system that allows inducible recruitment of Bin/amphiphysin/Rvs (BAR) domains to the plasma membrane (PM). Enhanced phosphatidylcholine-flippase activity at the PM due to expression of ATP10A, a member of the P4-ATPase family, promoted membrane tubulation upon recruitment of BAR domains to the PM This is the important evidence that changes in the transbilayer lipid composition induced by P4-ATPases can deform biological membranes.


Assuntos
Adenosina Trifosfatases/metabolismo , Membrana Celular/enzimologia , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfatidilcolinas/metabolismo , Adenosina Trifosfatases/genética , Membrana Celular/genética , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/genética , Fosfatidilcolinas/genética
7.
Nat Commun ; 8(1): 1423, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29123098

RESUMO

We and others showed that ATP11A and ATP11C, members of the P4-ATPase family, translocate phosphatidylserine (PS) and phosphatidylethanolamine from the exoplasmic to the cytoplasmic leaflets at the plasma membrane. PS exposure on the outer leaflet of the plasma membrane in activated platelets, erythrocytes, and apoptotic cells was proposed to require the inhibition of PS-flippases, as well as activation of scramblases. Although ATP11A and ATP11C are cleaved by caspases in apoptotic cells, it remains unclear how PS-flippase activity is regulated in non-apoptotic cells. Here we report that the PS-flippase ATP11C, but not ATP11A, is sequestered from the plasma membrane via clathrin-mediated endocytosis upon Ca2+-mediated PKC activation. Importantly, we show that a characteristic di-leucine motif (SVRPLL) in the C-terminal cytoplasmic region of ATP11C becomes functional upon PKC activation. Moreover endocytosis of ATP11C is induced by Ca2+-signaling via Gq-coupled receptors. Our data provide the first evidence for signal-dependent regulation of mammalian P4-ATPase.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteína Quinase C-alfa/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Regulação para Baixo , Endocitose/efeitos dos fármacos , Ativação Enzimática , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Camundongos , Fosforilação , Serina/química , Acetato de Tetradecanoilforbol/farmacologia
8.
J Biol Chem ; 290(24): 15004-17, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25947375

RESUMO

We showed previously that ATP11A and ATP11C have flippase activity toward aminophospholipids (phosphatidylserine (PS) and phosphatidylethanolamine (PE)) and ATP8B1 and that ATP8B2 have flippase activity toward phosphatidylcholine (PC) (Takatsu, H., Tanaka, G., Segawa, K., Suzuki, J., Nagata, S., Nakayama, K., and Shin, H. W. (2014) J. Biol. Chem. 289, 33543-33556). Here, we show that the localization of class 5 P4-ATPases to the plasma membrane (ATP10A and ATP10D) and late endosomes (ATP10B) requires an interaction with CDC50A. Moreover, exogenous expression of ATP10A, but not its ATPase-deficient mutant ATP10A(E203Q), dramatically increased PC flipping but not flipping of PS or PE. Depletion of CDC50A caused ATP10A to be retained at the endoplasmic reticulum instead of being delivered to the plasma membrane and abrogated the increased PC flipping activity observed by expression of ATP10A. These results demonstrate that ATP10A is delivered to the plasma membrane via its interaction with CDC50A and, specifically, flips PC at the plasma membrane. Importantly, expression of ATP10A, but not ATP10A(E203Q), dramatically altered the cell shape and decreased cell size. In addition, expression of ATP10A, but not ATP10A(E203Q), delayed cell adhesion and cell spreading onto the extracellular matrix. These results suggest that enhanced PC flipping activity due to exogenous ATP10A expression alters the lipid composition at the plasma membrane, which may in turn cause a delay in cell spreading and a change in cell morphology.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Fosfatidilcolinas/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Transporte Biológico , Adesão Celular/fisiologia , Membrana Celular/fisiologia , Movimento Celular/fisiologia , Primers do DNA , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Ligação Proteica , Homologia de Sequência de Aminoácidos , Frações Subcelulares/enzimologia
9.
Mol Biol Cell ; 24(16): 2570-81, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23783033

RESUMO

Small GTPases of the ADP-ribosylation factor (ARF) family, except for ARF6, mainly localize to the Golgi apparatus, where they trigger formation of coated carrier vesicles. We recently showed that class I ARFs (ARF1 and ARF3) localize to recycling endosomes, as well as to the Golgi, and are redundantly required for recycling of endocytosed transferrin. On the other hand, the roles of class II ARFs (ARF4 and ARF5) are not yet fully understood, and the complementary or overlapping functions of class I and class II ARFs have been poorly characterized. In this study, we find that simultaneous depletion of ARF1 and ARF4 induces extensive tubulation of recycling endosomes. Moreover, the depletion of ARF1 and ARF4 inhibits retrograde transport of TGN38 and mannose-6-phosphate receptor from early/recycling endosomes to the trans-Golgi network (TGN) but does not affect the endocytic/recycling pathway of transferrin receptor or inhibit retrograde transport of CD4-furin from late endosomes to the TGN. These observations indicate that the ARF1+ARF4 and ARF1+ARF3 pairs are both required for integrity of recycling endosomes but are involved in distinct transport pathways: the former pair regulates retrograde transport from endosomes to the TGN, whereas the latter is required for the transferrin recycling pathway from endosomes to the plasma membrane.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Fator 1 de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/genética , Antígenos CD4/metabolismo , Linhagem Celular Tumoral , Furina/metabolismo , Células HeLa , Humanos , Glicoproteínas de Membrana/metabolismo , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno , Receptor IGF Tipo 2/metabolismo , Receptores da Transferrina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab4 de Ligação ao GTP/metabolismo , Rede trans-Golgi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA