Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Cell Physiol ; 237(11): 4180-4196, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35994698

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death receptor-mediated extrinsic apoptosis, specifically in cancer cells, and Bid (BH3-interacting domain death agonist) plays an important role in TRAIL-induced apoptosis. Ferroptosis is a newly defined form of regulated cell death known to be distinct from other forms of cell death. However, our previous studies have shown that ferroptosis shares common pathways with other types of programmed cell death such as apoptosis. In this study, we investigated the role of Bid in the crosstalk between the ferroptotic agent-induced endoplasmic reticulum (ER) stress response and TRAIL-induced apoptosis. When human colorectal carcinoma HCT116 cells were treated with the ferroptosis-inducing agents artesunate and erastin in combination with TRAIL, TRAIL-induced activation of caspase-8 was enhanced, and subsequently, the truncation of Bid was increased. Similar results were observed when ovarian adenocarcinoma OVCAR-3 cells were treated with the ferroptotic agents in combination with TRAIL. Results from studies with Bid mutants reveal that the truncation of Bid and the presence of intact BH3 domains are critical for synergistic apoptosis. Nonfunctional Bid mutants were not able to activate the mitochondria-dependent apoptosis pathway, which is required for the conversion of p19 to p17, the active form of caspase-3. These results indicate that Bid plays a critical role in the crosstalk between the ferroptotic agent-induced ER stress response and TRAIL-induced apoptosis.


Assuntos
Apoptose , Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias Ovarianas/patologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Caspase 8/metabolismo , Estresse do Retículo Endoplasmático , Fator de Necrose Tumoral alfa/metabolismo
2.
J Biol Chem ; 298(6): 101981, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35472332

RESUMO

Mesenchymal stem cells (MSCs) are adult stem cell populations and exhibit great potential in regenerative medicine and oncology. Platelet-derived growth factors (PDGFs) are well known to regulate MSC biology through their chemotactic and mitogenic properties. However, their direct roles in the regulation of MSC lineage commitment are unclear. Here, we show that PDGF D promotes the differentiation of human bone marrow mesenchymal stem cells (hBMSCs) into osteoblasts and inhibits hBMSC differentiation into adipocytes. We demonstrate that PDGF D-induced ß-actin expression and polymerization are essential for mediating this differential regulation of osteoblastogenesis and adipogenesis. Interestingly, we found that PDGF D induces massive upward molecular weight shifts of its cognate receptor, PDGF receptor beta (ß-PDGFR) in hBMSCs, which was not observed in fibroblasts. Proteomic analysis indicated that the E3 ubiquitin ligase HECT, UBA, and WWE domain-containing protein 1 (HUWE1) associates with the PDGF D-activated ß-PDGFR signaling complex in hBMSCs, resulting in ß-PDGFR polyubiquitination. In contrast to the well-known role of ubiquitin in protein degradation, we provide evidence that HUWE1-mediated ß-PDGFR polyubiquitination delays ß-PDGFR internalization and degradation, thereby prolonging AKT signaling. Finally, we demonstrate that HUWE1-regulated ß-PDGFR signaling is essential for osteoblastic differentiation of hBMSCs, while being dispensable for PDGF D-induced hBMSC migration and proliferation as well as PDGF D-mediated inhibition of hBMSC differentiation into adipocytes. Taken together, our findings provide novel insights into the molecular mechanism by which PDGF D regulates the commitment of hBMSCs into the osteoblastic lineage.


Assuntos
Linfocinas/metabolismo , Células-Tronco Mesenquimais , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ubiquitina-Proteína Ligases , Diferenciação Celular , Proliferação de Células , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteômica , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Cells ; 10(10)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34685701

RESUMO

A hallmark of malignant solid tumor is extracellular acidification coupled with metabolic switch to aerobic glycolysis. Using the human MCF10A progression model of breast cancer, we show that glycolytic switch and extracellular acidosis in aggressive cancer cells correlate with increased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), known to induce intracellular signal transduction through the interaction with its cell surface receptor CD63, independent of its metalloproteinase inhibitory function. We found that, in aggressive breast carcinoma, the TIMP-1-CD63 signaling axis induced a metabolic switch by upregulating the rate of aerobic glycolysis, lowering mitochondrial respiration, preventing intracellular acidification, and inducing extracellular acidosis. Carbonic anhydrase IX (CAIX), a regulator of cellular pH through the hydration of metabolically released pericellular CO2, was identified as a downstream mediator of the TIMP-1-CD63 signaling axis responsible for extracellular acidosis. Consistently with our previous study, the TIMP-1-CD63 signaling promoted survival of breast cancer cells. Interestingly, breast carcinoma cell survival was drastically reduced upon shRNA-mediated knockdown of CAIX expression, demonstrating the significance of CAIX-regulated pH in the TIMP-1-CD63-mediated cancer cell survival. Taken together, the present study demonstrates the functional significance of TIMP-1-CD63-CAXI signaling axis in the regulation of tumor metabolism, extracellular acidosis, and survival of breast carcinoma. We propose that this axis may serve as a novel therapeutic target.


Assuntos
Neoplasias da Mama/metabolismo , Tetraspanina 30/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Ácidos/metabolismo , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Progressão da Doença , Espaço Extracelular/metabolismo , Feminino , Humanos , Modelos Biológicos , Invasividade Neoplásica
4.
Cell Death Dis ; 12(11): 997, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697296

RESUMO

The autophagy-lysosome pathway and apoptosis constitute vital determinants of cell fate and engage in a complex interplay in both physiological and pathological conditions. Central to this interplay is the archetypal autophagic cargo adaptor p62/SQSTM1/Sequestosome-1 which mediates both cell survival and endoplasmic reticulum stress-induced apoptosis via aggregation of ubiquitinated caspase-8. Here, we investigated the role of p62-mediated apoptosis in head and neck squamous cell carcinoma (HNSCC), which can be divided into two groups based on human papillomavirus (HPV) infection status. We show that increased autophagic flux and defective apoptosis are associated with radioresistance in HPV(-) HNSCC, whereas HPV(+) HNSCC fail to induce autophagic flux and readily undergo apoptotic cell death upon radiation treatments. The degree of radioresistance and tumor progression of HPV(-) HNSCC respectively correlated with autophagic activity and cytosolic levels of p62. Pharmacological activation of the p62-ZZ domain using small molecule ligands sensitized radioresistant HPV(-) HNSCC cells to ionizing radiation by facilitating p62 self-polymerization and sequestration of cargoes leading to apoptosis. The self-polymerizing activity of p62 was identified as the essential mechanism by which ubiquitinated caspase-8 is sequestered into aggresome-like structures, without which irradiation fails to induce apoptosis in HNSCC. Our results suggest that harnessing p62-dependent sequestration of ubiquitinated caspase-8 provides a novel therapeutic avenue in patients with radioresistant tumors.


Assuntos
Apoptose/imunologia , Radiação Ionizante , Proteína Sequestossoma-1/metabolismo , Animais , Caspase 8 , Humanos , Camundongos , Lesões por Radiação , Transdução de Sinais
5.
Cancers (Basel) ; 13(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801879

RESUMO

Despite recent advances in therapeutic modalities such as radiochemotherapy, the long-term prognosis for patients with advanced head and neck squamous cell carcinoma (HNSCC), especially nonviral HNSCC, remains very poor, while survival of patients with human papillomavirus (HPV)-associated HNSCC is greatly improved after radiotherapy. The goal of this study is to develop a mechanism-based treatment protocol for high-risk patients with HPV-negative HNSCC. To achieve our goal, we have investigated molecular mechanisms underlying differential radiation sensitivity between HPV-positive and -negative HNSCC cells. Here, we found that autophagy is associated with radioresistance in HPV-negative HNSCC, whereas apoptosis is associated with radiation sensitive HPV-positive HNSCC. Interestingly, we found that photodynamic therapy (PDT) directed at the endoplasmic reticulum (ER)/mitochondria initially induces paraptosis followed by apoptosis. This led to a substantial increase in radiation responsiveness in HPV-negative HNSCC, while the same PDT treatment had a minimal effect on HPV-positive cells. Here, we provide evidence that the autophagic adaptor p62 mediates signal relay for the induction of apoptosis, promoting ionizing radiation (XRT)-induced cell death in HPV-negative HNSCC. This work proposes that ER/mitochondria-targeted PDT can serve as a radiosensitizer in intrinsically radioresistant HNSCC that exhibits an increased autophagic flux.

6.
Sci Rep ; 10(1): 2099, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034211

RESUMO

Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a pleiotropic protein, promoting both tumor-suppressive and tumor-promoting activities. While TIMP-1 is primarily known as an endogenous inhibitor of matrix metalloproteinases (MMPs) and thus associated with tumor cell invasion, clinical studies demonstrated increased expression of TIMP-1 and its association with poor prognosis in cancer. Non-MMP-inhibitory and oncogenic functions of TIMP-1 are mediated by induction of intracellular signaling via its cell surface receptor CD63, a tetraspanin. The present study investigates the structure-function relationship of TIMP-1 for its interaction with CD63, which may eventually help design a novel approach for targeting TIMP-1's pro-oncogenic activity without interfering its tumor suppressive MMP-inhibitory function. Importantly, our analysis includes TIMP-1/CD63 interactions at the cell surface of live cells. Here, we demonstrate that the 9 C-terminal amino acid residues of TIMP-1 and the large extracellular loop of CD63 are required for their interaction. Considering that the N-terminal half of TIMP-1 is sufficient for TIMP-1's MMP-inhibitory activity, we propose that those C-terminal amino acid residues are a potentially targetable motif of TIMP-1 oncogenic activity. As a proof of concept, we present the potential for the development of neutralizing antibodies against the C-terminal motif of TIMP-1 for disruption of TIMP-1 interaction with CD63 and the subsequent signal transduction.


Assuntos
Neoplasias/metabolismo , Tetraspanina 30/metabolismo , Inibidor Tecidual de Metaloproteinase-1/química , Células HEK293 , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Relação Estrutura-Atividade , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/fisiologia , Técnicas do Sistema de Duplo-Híbrido
7.
Growth Factors ; 37(3-4): 131-145, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31542979

RESUMO

Despite strong evidence for the involvement of PDGF signaling in breast cancer, little is known about the PDGF ligand responsible for PDGFR activation during breast cancer progression. Here, we found PDGF-C to be highly expressed in breast carcinoma cell lines. Immunohistochemical analysis of invasive breast cancer revealed an association between increased PDGF-C expression and lymph node metastases, Ki-67 proliferation index, and poor disease-free survival. We also identified a PDGF-C splice variant encoding truncated PDGF-C (t-PDGF-C) isoform lacking the signal peptide and the N-terminal CUB domain. While t-PDGF C homodimer is retained intracellularly, it can be secreted as a heterodimer with full-length PDGF-C (FL-PDGF-C). PDGF-C downregulation reduced anchorage-independent growth and matrigel invasion of MDA-MB-231 cells. Conversely, ectopic expression of t-PDGF-C enhanced phenotypic transformation and invasion in BT-549 cells expressing endogenous FL-PDGF-C. The present study provides new insights into the functional significance of PDGF-C and its splice variant in human breast cancer.


Assuntos
Neoplasias da Mama/patologia , Metástase Linfática/genética , Linfocinas/genética , Linfocinas/metabolismo , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Linhagem Celular Tumoral , Intervalo Livre de Doença , Feminino , Humanos , Metástase Linfática/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais
8.
Oncotarget ; 8(31): 51530-51541, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28881665

RESUMO

HPV-positive oropharyngeal cancer patients experience significantly lower locoregional recurrence and higher overall survival in comparison with HPV-negative patients, especially among those who received radiation therapy. The goal of the present study is to investigate the molecular mechanisms underlying the differential radiation sensitivity between HPV-negative and HPV-positive head and neck squamous cell carcinoma (HNSCC). Here, we show that HPV-negative HNSCC cells exhibit increased glucose metabolism as evidenced by increased production of lactate, while HPV-positive HNSCC cells effectively utilize mitochondrial respiration as evidenced by increased oxygen consumption. HPV-negative cells express HIF1α and its downstream mediators of glucose metabolism such as hexokinase II (HKII) and carbonic anhydrase IX (CAIX) at higher levels, while the expression level of cytochrome c oxidase (COX) was noticeably higher in HPV-positive HNSCC. In addition, the expression levels of pyruvate dehydrogenase kinases (PDKs), which inhibit pyruvate dehydrogenase activity, thereby preventing entry of pyruvate into the mitochondrial tricarboxylic acid (TCA) cycle, were much higher in HPV-negative HNSCC compared to those in HPV-positive cells. Importantly, a PDK inhibitor, dichloroacetate, effectively sensitized HPV-negative cells to irradiation. Lastly, we found positive interactions between tonsil location and HPV positivity for COX intensity and COX/HKII index ratio as determined by immunohistochemical analysis. Overall survival of patients with HNSCC at the tonsil was significantly improved with an increased COX expression. Taken together, the present study provides molecular insights into the mechanistic basis for the differential responses to radiotherapy between HPV-driven vs. spontaneous or chemically induced oropharyngeal cancer.

9.
J Transl Med ; 14: 72, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26975354

RESUMO

BACKGROUND: Characterization of genes linked to bone metastasis is critical for identification of novel prognostic or predictive biomarkers and potential therapeutic targets in metastatic castrate-resistant prostate cancer (mCRPC). Although bone marrow core biopsies (BMBx) can be obtained for gene profiling, the procedure itself is invasive and uncommon practice in mCRPC patients. Conversely, circulating tumor cells (CTCs), which are likely to stem from bone metastases, can be isolated from blood. The goals of this exploratory study were to establish a sensitive methodology to analyze gene expression in BMBx and CTCs, and to determine whether the presence or absence of detectable gene expression is concordant in matching samples from mCRPC patients. METHODS: The CellSearch(®) platform was used to enrich and enumerate CTCs. Low numbers of PC3 prostate cancer (PCa) cells were spiked into normal blood to assess cell recovery rate. RNA extracted from recovered PC3 cells was amplified using an Eberwine-based procedure to obtain antisense mRNA (aRNA), and assess the linearity of the RNA amplification method. In this pilot study, RNAs extracted from CTCs and PCa cells microdissected from formalin-fixed paraffin-embedded BMBx, were amplified to obtain aRNA and assess the expression of eight genes functionally relevant to PCa bone metastasis using RT-PCR. RESULTS: RNAs were successfully extracted from as few as 1-5 PCa cells in blood samples. The relative expression levels of reference genes were maintained after RNA amplification. The integrity of the amplified RNA was also demonstrated by RT-PCR analysis using primer sets that target the 5'-end, middle, and 3'-end of reference mRNA. We found that in 21 out of 28 comparisons, the presence or absence of detectable gene expression in CTCs and PCa cells microdissected from single bone lesions of the same patients was concordant. CONCLUSIONS: This exploratory analysis suggests that aRNA amplification through in vitro transcription may be useful as a method to detect gene expression in small numbers of CTCs and tumor cells microdissected from bone metastatic lesions. In some cases, gene expression in CTCs and BMBxs was not concordant, raising questions about using CTC gene expression to make clinical decisions.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células Neoplásicas Circulantes/patologia , Neoplasias de Próstata Resistentes à Castração/patologia , Idoso , Idoso de 80 Anos ou mais , Biópsia , Medula Óssea/patologia , Linhagem Celular Tumoral , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias de Próstata Resistentes à Castração/genética , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Reprodutibilidade dos Testes
10.
Prostate ; 76(6): 534-42, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26732854

RESUMO

PURPOSE: To determine the functional relationship between androgen receptor (AR) and PDGF D as it relates to the radiation response of PTEN-null prostate cancer (PCa) cells and the effect of enzalutamide on these interactions. METHODS AND MATERIALS: Using murine PTEN-null prostate epithelial cell line and human prostate carcinoma LNCaP (PTEN-mutant) models, nuclear and cytosolic AR levels were determined by immunoblot analysis and the transcriptional activity of nuclear AR was assessed by RT-PCR analysis of its target genes with or without irradiation. Cell survival was evaluated by clonogenic assay or sulforhodamine B (SRB) assay upon irradiation in the absence or presence of the AR antagonist enzalutamide. RESULTS: PTEN loss resulted in upregulation of AR expression in a PDGF-D dependent manner and irradiation selectively increased the nuclear AR protein level and its activity in a murine cell model. When the functional significance of AR in cell survival was tested, treatment with enzalutamide resulted in radiosensitization of human LNCaP cells. Similarly to the murine model, PDGF-D overexpression increased the nuclear AR level and its transcriptional activity in LNCaP cells. PDGF-D over-expression was associated with radioresistance and enzalutamide treatment effectively reversed PDGF-D-mediated radioresistance in LNCaP cells. CONCLUSIONS: We have demonstrated that AR, a target of the PTEN and PDGF D-downstream signaling program, contributes to radiation resistance in human PCa cells. In addition, this study suggests that anti-androgens such as enzalutamide may serve as radiation sensitizers for the treatment of PCa patients, particularly so in patients with loss of PTEN or overexpression of PDGF-D.


Assuntos
Linfocinas/metabolismo , Feniltioidantoína/análogos & derivados , Fator de Crescimento Derivado de Plaquetas/metabolismo , Neoplasias da Próstata , Receptores Androgênicos/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/farmacologia , Benzamidas , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Nitrilas , PTEN Fosfo-Hidrolase/metabolismo , Feniltioidantoína/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Proteínas Supressoras de Tumor/metabolismo
11.
Am J Physiol Cell Physiol ; 310(4): C293-304, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26157007

RESUMO

Activation of ß-platelet-derived growth factor receptor (ß-PDGFR) is associated with prostate cancer (PCa) progression and recurrence after prostatectomy. Analysis of the ß-PDGFR ligands in PCa revealed association between PDGF-D expression and Gleason score as well as tumor stage. During the course of studying the functional consequences of PDGF ligand-specific ß-PDGFR signaling in PCa, we discovered a novel function of PDGF-D for activation/shedding of the serine protease matriptase leading to cell invasion, migration, and tumorigenesis. The present study showed that PDGF-D, not PDGF-B, induces extracellular acidification, which correlates with increased matriptase activation. A cDNA microarray analysis revealed that PDGF-D/ß-PDGFR signaling upregulates expression of the acidosis regulator carbonic anhydrase IX (CAIX), a classic target of the transcriptional factor hypoxia-inducible factor-1α (HIF-1α). Cellular fractionation displayed a strong HIF-1α nuclear localization in PDGF-D-expressing cells. Treatment of vector control or PDGF-B-expressing cells with the HIF-1α activator CoCl2 led to increased CAIX expression accompanied by extracellular acidosis and matriptase activation. Furthermore, the analysis of the CAFTD cell lines, variants of the BPH-1 transformation model, showed that increased PDGF-D expression is associated with enhanced HIF-1α activity, CAIX induction, cellular acidosis, and matriptase shedding. Importantly, shRNA-mediated knockdown of CAIX expression effectively reversed extracellular acidosis and matriptase activation in PDGF-D-transfected BPH-1 cells and in CAFTD variants that express endogenous PDGF-D at a high level. Taken together, these novel findings reveal a new paradigm in matriptase activation involving PDGF-D-specific signal transduction leading to extracellular acidosis.


Assuntos
Linfocinas/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Neoplasias da Próstata/enzimologia , Serina Endopeptidases/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Comunicação Autócrina , Anidrase Carbônica IX , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Regulação da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linfocinas/genética , Masculino , Fator de Crescimento Derivado de Plaquetas/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Interferência de RNA , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Serina Endopeptidases/genética , Transdução de Sinais , Fatores de Tempo , Transfecção
12.
Mol Cancer Res ; 12(9): 1324-33, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24895412

RESUMO

UNLABELLED: Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates intracellular signaling networks for inhibition of apoptosis. Tetraspanin (CD63), a cell surface binding partner for TIMP-1, was previously shown to regulate integrin-mediated survival pathways in the human breast epithelial cell line MCF10A. In the current study, we show that TIMP-1 expression induces phenotypic changes in cell morphology, cell adhesion, cytoskeletal remodeling, and motility, indicative of an epithelial-mesenchymal transition (EMT). This is evidenced by loss of the epithelial cell adhesion molecule E-cadherin with an increase in the mesenchymal markers vimentin, N-cadherin, and fibronectin. Signaling through TIMP-1, but not TIMP-2, induces the expression of TWIST1, an important EMT transcription factor known to suppress E-cadherin transcription, in a CD63-dependent manner. RNAi-mediated knockdown of TWIST1 rescued E-cadherin expression in TIMP-1-overexpressing cells, demonstrating a functional significance of TWIST1 in TIMP-1-mediated EMT. Furthermore, analysis of TIMP-1 structural mutants reveals that TIMP-1 interactions with CD63 that activate cell survival signaling and EMT do not require the matrix metalloproteinase (MMP)-inhibitory domain of TIMP-1. Taken together, these data demonstrate that TIMP-1 binding to CD63 activates intracellular signal transduction pathways, resulting in EMT-like changes in breast epithelial cells, independent of its MMP-inhibitory function. IMPLICATIONS: TIMP-1's function as an endogenous inhibitor of MMP or as a "cytokine-like" signaling molecule may be a critical determinant for tumor cell behavior.


Assuntos
Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal/genética , Proteínas Nucleares/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Proteína 1 Relacionada a Twist/metabolismo , Apoptose/genética , Neoplasias da Mama/patologia , Caderinas/genética , Caderinas/metabolismo , Proliferação de Células/genética , Sobrevivência Celular/genética , Células Epiteliais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Nucleares/genética , Transdução de Sinais , Tetraspanina 30 , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Proteína 1 Relacionada a Twist/genética
13.
Int J Radiat Oncol Biol Phys ; 88(1): 151-8, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24331662

RESUMO

PURPOSE: Loss or mutation of the phosphate and tensin homologue (PTEN) is a common genetic abnormality in prostate cancer (PCa) and induces platelet-derived growth factor D (PDGF D) signaling. We examined the role of the PTEN/PDGF axis on radioresponse using a murine PTEN null prostate epithelial cell model. METHODS AND MATERIALS: PTEN wild-type (PTEN+/+) and PTEN knockout (PTEN-/-) murine prostate epithelial cell lines were used to examine the relationship between the PTEN status and radiosensitivity and also to modulate the PDGF D expression levels. PTEN-/- cells were transduced with a small hairpin RNA (shRNA) lentiviral vector containing either scrambled nucleotides (SCRM) or sequences targeted to PDGF D (shPDGF D). Tumorigenesis and morphogenesis of these cell lines were evaluated in vivo via subcutaneous injection of male nude mice and in vitro using Matrigel 3-dimensional (3D) culture. Effects of irradiation on clonogenic survival, cell migration, and invasion were measured with respect to the PTEN status and the PDGF D expression level. In addition, apoptosis and cell cycle redistribution were examined as potential mechanisms for differences seen. RESULTS: PTEN-/- cells were highly tumorigenic in animals and effectively formed foci in 3D culture. Importantly, loss of PDGF D in these cell lines drastically diminished these phenotypes. Furthermore, PTEN-/- cells demonstrated increased clonogenic survival in vitro compared to PTEN+/+, and attenuation of PDGF D significantly reversed this radioresistant phenotype. PTEN-/- cells displayed greater migratory and invasive potential at baseline as well as after irradiation. Both the basal and radiation-induced migratory and invasive phenotypes in PTEN-/- cells required PDGF D expression. Interestingly, these differences were independent of apoptosis and cell cycle redistribution, as they showed no significant difference. CONCLUSIONS: We propose that PDGF D represents a potentially promising target for PCa treatment resistance in the absence of PTEN function, and warrants further laboratory evaluation and clinical study.


Assuntos
Adenocarcinoma/radioterapia , Transformação Celular Neoplásica , Linfocinas/fisiologia , Proteínas de Neoplasias/fisiologia , PTEN Fosfo-Hidrolase/fisiologia , Fator de Crescimento Derivado de Plaquetas/fisiologia , Neoplasias da Próstata/radioterapia , Tolerância a Radiação/fisiologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Apoptose/fisiologia , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Transformação Celular Neoplásica/patologia , Masculino , Camundongos , Camundongos Nus , Camundongos SCID , Invasividade Neoplásica , Proteínas de Neoplasias/deficiência , PTEN Fosfo-Hidrolase/deficiência , Fenótipo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Transdução de Sinais/fisiologia
14.
Mol Cancer Res ; 10(8): 1087-97, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22689130

RESUMO

The platelet-derived growth factors (PDGF A, B, C, and D) and their receptors (α-PDGFR and ß-PDGFR) play an indispensible role in physiologic and pathologic conditions, including tumorigenesis. The transformative ß-PDGFR is overexpressed and activated during prostate cancer progression, but the identification and functional significance of its complementary ligand have not been elucidated. This study examined potential oncogenic functions of ß-PDGFR ligands PDGF B and PDGF D, using nonmalignant prostate epithelial cells engineered to overexpress these ligands. In our models, PDGF D induced cell migration and invasion more effectively than PDGF B in vitro. Importantly, PDGF D supported prostate epithelial cell tumorigenesis in vivo and showed increased tumor angiogenesis compared with PDGF B. Autocrine signaling analysis of the mitogen-activated protein kinase and phosphoinositide 3-kinase pathways found PDGF D-specific activation of the c-jun-NH2-kinase (JNK) signaling cascade. Using short hairpin RNA and pharmacologic inhibitors, we showed that PDGFD-mediated phenotypic transformation is ß-PDGFR and JNK dependent. Importantly, we made a novel finding of PDGF D-specific increase in the shedding and activation of the serine protease matriptase in prostate epithelial cells. Our study, for the first time to our knowledge, showed ligand-specific ß-PDGFR signaling as well as PDGF D-specific regulation of matriptase activity and its spatial distribution through shedding. Taken together with our previous finding that matriptase is a proteolytic activator of PDGF D, this study provides a molecular insight into signal amplification of the proteolytic network and PDGF signaling loop during cancer progression.


Assuntos
Linfocinas , Fator de Crescimento Derivado de Plaquetas , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-sis , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Animais , Becaplermina , Linhagem Celular Tumoral , Movimento Celular , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Humanos , Linfocinas/genética , Linfocinas/metabolismo , Masculino , Camundongos , Camundongos SCID , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Invasividade Neoplásica , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transdução de Sinais
15.
Prostate ; 72(12): 1328-38, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22213159

RESUMO

BACKGROUND: The major cause of death in prostate cancer (PCa) cases is due to distant metastatic lesions, with the bone being the most prevalent site for secondary colonization. Utilization of small molecule inhibitors to treat bone metastatic PCa have had limited success either as monotherapies or in combination with other chemotherapeutics due to intolerable toxicities. In the current study, we developed a clinically relevant in vivo intraosseous tumor model overexpressing the platelet-derived growth factor D (PDGF D) to test the efficacy of a newly characterized vascular endothelial growth factor receptor (VEGFR)/PDGFR inhibitor, cediranib (also called AZD2171). METHODS: An intratibial-injection model was established utilizing DU145 cells with or without increased PDGF D expression. Tumor-bearing mice were treated by daily gavage administration of cediranib and/or weekly i.p. injection of docetaxel for 7 weeks. Tibiae were monitored by in vivo/ex vivo X-rays and histomorphometry analysis was performed to estimate tumor volume and tumor-associated trabecular bone growth. RESULTS: Cediranib reduced intraosseous growth of prostate tumors as well as tumor-associated bone responses. When compared to the standard chemotherapeutic agent docetaxel, cediranib exhibited a stronger inhibition of tumor-associated bone response. The efficacy of cediranib was further enhanced when the drug was co-administered with docetaxel. Importantly, the therapeutic benefits of cediranib and docetaxel are more prominent in intraosseous prostate tumors overexpressing PDGF D. CONCLUSION: These novel findings support the utilization of cediranib, either alone or in combination with docetaxel, to treat bone metastatic PCa exhibiting PDGF D expression.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Inibidores do Crescimento/uso terapêutico , Linfocinas/biossíntese , Fator de Crescimento Derivado de Plaquetas/biossíntese , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Quinazolinas/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Humanos , Linfocinas/antagonistas & inibidores , Masculino , Camundongos , Camundongos SCID , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Neoplasias da Próstata/metabolismo , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
Biochem J ; 441(3): 909-18, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22035541

RESUMO

The PDGF (platelet-derived growth factor) family members are potent mitogens for cells of mesenchymal origin and serve as important regulators of cell migration, survival, apoptosis and transformation. Tumour-derived PDGF ligands are thought to function in both autocrine and paracrine manners, activating receptors on tumour and surrounding stromal cells. PDGF-C and -D are secreted as latent dimers, unlike PDGF-A and -B. Cleavage of the CUB domain from the PDGF-C and -D dimers is required for their biological activity. At present, little is known about the proteolytic processing of PDGF-C, the rate-limiting step in the regulation of PDGF-C activity. In the present study we show that the breast carcinoma cell line MCF7, engineered to overexpress PDGF-C, produces proteases capable of cleaving PDGF-C to its active form. Increased PDGF-C expression enhances cell proliferation, anchorage-independent cell growth and tumour cell motility by autocrine signalling. In addition, MCF7-produced PDGF-C induces fibroblast cell migration in a paracrine manner. Interestingly, PDGF-C enhances tumour cell invasion in the presence of fibroblasts, suggesting a role for tumour-derived PDGF-C in tumour-stromal interactions. In the present study, we identify tPA (tissue plasminogen activator) and matriptase as major proteases for processing of PDGF-C in MCF7 cells. In in vitro studies, we also show that uPA (urokinase-type plasminogen activator) is able to process PDGF-C. Furthermore, by site-directed mutagenesis, we identify the cleavage site for these proteases in PDGF-C. Lastly, we provide evidence suggesting a two-step proteolytic processing of PDGF-C involving creation of a hemidimer, followed by GFD-D (growth factor domain dimer) generation.


Assuntos
Neoplasias da Mama/patologia , Carcinoma/patologia , Linfocinas/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Serina Proteases/fisiologia , Animais , Comunicação Autócrina/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma/genética , Carcinoma/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Linfocinas/antagonistas & inibidores , Linfocinas/genética , Linfocinas/fisiologia , Camundongos , Células NIH 3T3 , Comunicação Parácrina/genética , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/fisiologia , Multimerização Proteica/genética , Multimerização Proteica/fisiologia , Processamento de Proteína Pós-Traducional , Serina Proteases/genética , Serina Proteases/metabolismo , Transfecção
17.
Curr Pharm Des ; 15(20): 2311-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19601833

RESUMO

ADAM15 is a widely expressed multi-domain protease that has been implicated in the pathogenesis of many human diseases. Given the diversity of the ADAM15 functional domains, this protease is thought to affect several important cellular processes, including cell adhesion, degradation of extracellular matrix components, and ectodomain shedding of membrane-bound growth factors that are intrinsic to cancer and various inflammatory conditions. The multiple levels by which the activity of ADAM15 can be regulated include signal transduction, modulation of catalytic function, spatial regulation, and post-translational modifications. Taken together, this multi-functional disintegrin protease not only offers a variety of potential targets for therapeutic intervention, but also represents an attractive target for pharmaceutical consideration due to its involvement in key cellular processes and various disease states. Modalities aimed at inhibiting protease activation, metalloproteinase activity, or integrin binding capability could prove beneficial for the treatment of cancer and inflammatory diseases.


Assuntos
Proteínas ADAM/efeitos dos fármacos , Inflamação/tratamento farmacológico , Proteínas de Membrana/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Humanos
18.
J Biol Chem ; 283(26): 18393-401, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18434311

RESUMO

The zinc-dependent disintegrin metalloproteinases (a disintegrin and metalloproteinases (ADAMs) have been implicated in several disease processes, including human cancer. Previously, we demonstrated that the expression of a catalytically active member of the ADAM family, ADAM15, is associated with the progression of prostate and breast cancer. The accumulation of the soluble ectodomain of E-cadherin in human serum has also been associated with the progression of prostate and breast cancer and is thought to be mediated by metalloproteinase shedding. Utilizing two complementary models, overexpression and stable short hairpin RNA-mediated knockdown of ADAM15 in breast cancer cells, we demonstrated that ADAM15 cleaves E-cadherin in response to growth factor deprivation. We also demonstrated that the extracellular shedding of E-cadherin was abrogated by a metalloproteinase inhibitor and through the introduction of a catalytically inactive mutation in ADAM15. We have made the novel observation that this soluble E-cadherin fragment was found in complex with the HER2 and HER3 receptors in breast cancer cells. These interactions appeared to stabilize HER2 heterodimerization with HER3 and induced receptor activation and signaling through the Erk pathway, supporting both cell migration and proliferation. In this study, we provide evidence that ADAM15 catalyzes the cleavage of E-cadherin to generate a soluble fragment that in turn binds to and stimulates ErbB receptor signaling.


Assuntos
Proteínas ADAM/química , Caderinas/química , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/química , Receptor ErbB-2/metabolismo , Caderinas/metabolismo , Catálise , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Dimerização , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Estrutura Terciária de Proteína , RNA/química , Transdução de Sinais
19.
Cancer Res ; 68(4): 1092-9, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18281484

RESUMO

Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15 in the metastatic prostate cancer cell line, PC-3. ADAM15 down-regulation dramatically attenuated many of the malignant characteristics of PC-3 cells in vitro and prevented the s.c. growth of PC-3 cells in severe combined immunodeficient (SCID) mice. By inhibiting the expression of ADAM15 in PC-3 cells, we showed decreased cell migration and adhesion to specific extracellular matrix proteins. This was accompanied by a reduction in the cleavage of N-cadherin by ADAM15 at the cell surface. Fluorescence-activated cell sorting analysis revealed reduced cell surface expression of the metastasis-associated proteins alpha(v) integrin and CD44. Furthermore, matrix metalloproteinase 9 secretion and activity were abrogated in response to ADAM15 reduction. In an in vitro model of vascular invasion, loss of ADAM15 reduced PC-3 adhesion to, and migration through, vascular endothelial cell monolayers. Using an SCID mouse model of human prostate cancer metastasis, we found that the loss of ADAM15 significantly attenuated the metastatic spread of PC-3 cells to bone. Taken together, these data strongly support a functional role for ADAM15 in prostate tumor cell interaction with vascular endothelium and the metastatic progression of human prostate cancer.


Assuntos
Proteínas ADAM/fisiologia , Comunicação Celular/fisiologia , Células Endoteliais/patologia , Proteínas de Membrana/fisiologia , Neoplasias da Próstata/patologia , Proteínas ADAM/biossíntese , Proteínas ADAM/genética , Animais , Neoplasias Ósseas/secundário , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Endoteliais/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos SCID , Metástase Neoplásica , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA