Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38960622

RESUMO

A pleiotropic immunoregulatory cytokine, TGF-ß, signals via the receptor-regulated SMADs: SMAD2 and SMAD3, which are constitutively expressed in normal cells. Here, we show that selective repression of SMAD3 induces cDC differentiation from the CD115+ common DC progenitor (CDP). SMAD3 was expressed in haematopoietic cells including the macrophage DC progenitor. However, SMAD3 was specifically down-regulated in CD115+ CDPs, SiglecH- pre-DCs, and cDCs, whereas SMAD2 remained constitutive. SMAD3-deficient mice showed a significant increase in cDCs, SiglecH- pre-DCs, and CD115+ CDPs compared with the littermate control. SMAD3 repressed the mRNA expression of FLT3 and the cDC-related genes: IRF4 and ID2. We found that one of the SMAD transcriptional corepressors, c-SKI, cooperated with phosphorylated STAT3 at Y705 and S727 to repress the transcription of SMAD3 to induce cDC differentiation. These data indicate that STAT3 and c-Ski induce cDC differentiation by repressing SMAD3: the repressor of the cDC-related genes during the developmental stage between the macrophage DC progenitor and CD115+ CDP.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA , Células Dendríticas , Proteínas Proto-Oncogênicas , Fator de Transcrição STAT3 , Proteína Smad3 , Animais , Camundongos , Células Dendríticas/metabolismo , Células Dendríticas/citologia , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad2/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteínas de Ligação a DNA/metabolismo
2.
Nat Commun ; 14(1): 5411, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669929

RESUMO

Intestinal stem cells (ISCs) maintain the epithelial lining of the intestines, but mechanisms regulating ISCs and their niche after damage remain poorly understood. Utilizing radiation injury to model intestinal pathology, we report here that the Interleukin-33 (IL-33)/ST2 axis, an immunomodulatory pathway monitored clinically as an intestinal injury biomarker, regulates intrinsic epithelial regeneration by inducing production of epidermal growth factor (EGF). Three-dimensional imaging and lineage-specific RiboTag induction within the stem cell compartment indicated that ISCs expressed IL-33 in response to radiation injury. Neighboring Paneth cells responded to IL-33 by augmenting production of EGF, which promoted ISC recovery and epithelial regeneration. These findings reveal an unknown pathway of niche regulation and crypt regeneration whereby the niche responds dynamically upon injury and the stem cells orchestrate regeneration by regulating their niche. This regenerative circuit also highlights the breadth of IL-33 activity beyond immunomodulation and the therapeutic potential of EGF administration for treatment of intestinal injury.


Assuntos
Interleucina-33 , Lesões por Radiação , Humanos , Fator de Crescimento Epidérmico , Imageamento Tridimensional , Imunomodulação
3.
Biochem Biophys Res Commun ; 678: 193-199, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37651888

RESUMO

Severely immunodeficient mice are useful for understanding the pathogenesis of certain tumors and for developing therapeutic agents for such tumors. In addition, engraftment of these mice with human hematopoietic cells can yield information that helps us understand the in vivo molecular mechanisms underlying actual human viral infections. In our present research, we discovered a novel, severely immunodeficient strain of mice having a mutation in exon 57 of the Prkdc gene (PrkdcΔex57/Δex57) in an inbred colony of B10.S/SgSlc mice. Those PrkdcΔex57/Δex57 mice showed thymic hypoplasia and lack of mature T cells and B cells in peripheral lymphoid tissues, resulting in very low levels of production of serum immunoglobulins. In addition, those mice were highly susceptible to influenza viruses due to the lack of acquired immune cells. On the other hand, since they had sufficient numbers of NK cells, they rejected tumor transplants, similarly to Prkdc+/+ mice. Next, we generated Foxn1nu/nuPrkdcΔex57/Δex57Il2rg-/- (NPG) mice on the BALB/cSlc background, which lack all lymphocytes such as T cells, B cells and innate lymphoid cells, including NK cells. As expected, these mice were able to undergo engraftment of human tumor cell lines. These findings suggest that PrkdcΔex57/Δex57 mice will be useful as a novel model of immunodeficiency, while NPG mice will be useful for xenografting of various malignancies.


Assuntos
Imunidade Inata , Síndromes de Imunodeficiência , Humanos , Animais , Camundongos , Células Matadoras Naturais , Linfócitos B , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Proteína Quinase Ativada por DNA
4.
Biomed Res ; 44(1): 9-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36682799

RESUMO

Interleukin-33 (IL-33) is a member of the IL-1 cytokine family that has been studied primarily in the context of type 2 immune responses. Recent reports suggest that IL-33 also enhances the func- tions of various immune cells and contributes to the development of different inflammatory diseas- es. Interestingly, IL-33 and its receptor ST2 axis exerted either inhibitory or promotional effects on alveolar bone loss in various periodontitis models. Using a mouse model of ligature-induced periodontitis, we found that the levels of mRNAs encoding IL-33 and other inflammatory cyto- kines (IL-1α, IL-1ß, IL-6, and TNFα) were augmented in gingival tissues of wild-type (WT) mice, and that the alveolar bone loss amount was lower in IL-33-deficient than WT mice. The numbers and proportions of IFN-γ-producing CD8+ T and regulatory T cells were decreased while those of Th17 cells were increased in the draining lymph nodes of IL-33-deficient mice compared to WT mice. Additionally, the level of RNA encoding an osteoclastogenic molecule, i.e., receptor activa- tor of nuclear factor kappa-B ligand (RANKL), in ligated gingival tissue was higher in IL-33-defi- cient than WT mice. These results suggest that IL-33 is involved in alveolar bone loss in the ligature-induced periodontitis model, although IL-33 may inhibit osteoclast differentiation.


Assuntos
Perda do Osso Alveolar , Periodontite , Camundongos , Animais , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/patologia , Interleucina-33/genética , Periodontite/patologia , Citocinas , Osteogênese , Ligante RANK/genética , Ligante RANK/farmacologia
5.
Microbiol Immunol ; 67(3): 105-113, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36604771

RESUMO

The bone marrow (BM) stromal cell antigen-2 (BST-2), also known as tetherin, CD317, PDCA-1, or HM1.24, is a membrane protein overexpressed in several types of tumors and may act as a promising target for cancer treatment via antibody-dependent cellular cytotoxicity. BST-2 is also expressed in human BM stromal cells (BMSC), which support B cell development. While the activity of BST-2 as an antiviral factor has been demonstrated, the expression patterns and the role of BST-2 on B-cell development and activation have not been investigated, especially in vivo. In this study, Bst2 knockout (Bst2-/- ) mice were generated to assess the role of BST-2 on B cell development and activation. It was observed that BST-2 was not expressed in BMSC or all B cell progenitors even in wild-type mice and does not play a significant role in B cell development. In addition, the loss of BST-2 had no effect on B cell activation. Furthermore and in contrast to the well-known antiviral role of BST-2, infection of vesicular stomatitis Indiana virus to the BM cells collected from the Bst2-/- mice produced less infectious virus compared with that from the WT mice. These results suggest that murine BST-2 is different from human BST-2 in the expression pattern, physiological function, in vivo, and might possess positive role on VSV replication.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , Animais , Humanos , Camundongos , Proteínas de Membrana , Vírus da Estomatite Vesicular Indiana , Antígeno 2 do Estroma da Médula Óssea/metabolismo
6.
Front Immunol ; 13: 939378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844571

RESUMO

Group 2 innate lymphoid cells (ILC2s) are typically known for their ability to respond rapidly to parasitic infections and play a pivotal role in the development of certain allergic disorders. ILC2s produce cytokines such as Interleukin (IL)-5 and IL-13 similar to the type 2 T helper (Th2) cells. Recent findings have highlighted that ILC2s, together with IL-33 and eosinophils, participate in a considerably broad range of physiological roles such as anti-tumor immunity, metabolic regulation, and vascular disorders. Therefore, the focus of the ILC2 study has been extended from conventional Th2 responses to these unexplored areas of research. However, disease outcomes accompanied by ILC2 activities are paradoxical mostly in tumor immunity requiring further investigations. Although various environmental factors that direct the development, activation, and localization of ILC2s have been studied, IL-33/ILC2/eosinophil axis is presumably central in a multitude of inflammatory conditions and has guided the research in ILC2 biology. With a particular focus on this axis, we discuss ILC2s across different diseases.


Assuntos
Doenças Cardiovasculares , Neoplasias , Humanos , Imunidade Inata , Interleucina-33 , Linfócitos , Obesidade
7.
Sci Immunol ; 7(72): eabl7209, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35749514

RESUMO

Long-term senescent cells exhibit a secretome termed the senescence-associated secretory phenotype (SASP). Although the mechanisms of SASP factor induction have been intensively studied, the release mechanism and how SASP factors influence tumorigenesis in the biological context remain unclear. In this study, using a mouse model of obesity-induced hepatocellular carcinoma (HCC), we identified the release mechanism of SASP factors, which include interleukin-1ß (IL-1ß)- and IL-1ß-dependent IL-33, from senescent hepatic stellate cells (HSCs) via gasdermin D (GSDMD) amino-terminal-mediated pore. We found that IL-33 was highly induced in senescent HSCs in an IL-1ß-dependent manner in the tumor microenvironment. The release of both IL-33 and IL-1ß was triggered by lipoteichoic acid (LTA), a cell wall component of gut microbiota that was transferred and accumulated in the liver tissue of high-fat diet-fed mice, and the release of these factors was mediated through cell membrane pores formed by the GSDMD amino terminus, which was cleaved by LTA-induced caspase-11. We demonstrated that IL-33 release from HSCs promoted HCC development via the activation of ST2-positive Treg cells in the liver tumor microenvironment. The accumulation of GSDMD amino terminus was also detected in HSCs from human NASH-associated HCC patients, suggesting that similar mechanism could be involved in a certain type of human HCC. These results uncover a release mechanism for SASP factors from sensitized senescent HSCs in the tumor microenvironment, thereby facilitating obesity-associated HCC progression. Furthermore, our findings highlight the therapeutic potential of inhibitors of GSDMD-mediated pore formation for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Senescência Celular , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Interleucina-33/metabolismo , Camundongos , Obesidade/complicações , Obesidade/metabolismo , Microambiente Tumoral
8.
Biochem Biophys Res Commun ; 530(3): 508-512, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32600615

RESUMO

Thymic stromal lymphopoietin (TSLP) is a member of the IL-2 cytokine family, which is known to activate type 2 innate lymphoid cells, mast cells, and Th2 cells; this activation results in allergic inflammation and host defense against parasites. TSLP has also been shown to promote Th17-mediated immune responses, such as those observed in the development of rheumatoid arthritis; however, its role in osteoclastogenesis remains poorly understood. Here, we investigated the functional involvement of TSLP in RANKL-induced osteoclast differentiation from murine bone marrow-derived macrophages (BMMs). Both RANK- and RANK+ macrophages expressed TSLP receptor (TSLPR), while RANK+ osteoclast precursors maintained TSLPR expression after RANKL stimulation. TSLP stimulation led to inhibition of RANK-induced osteoclast differentiation in wild-type BMMs, but not Tslpr-/- BMMs; TSLP stimulation also led to suppression of osteoclastogenic gene expression (Nfatc1, Acp5, Mmp9, and Ctsk). These inhibitory effects of TSLP were significantly reduced following STAT1 inhibition. Finally, we found that LPS stimulation induced TSLP production in murine calvarial osteoblasts, but not BMMs. Together, these observations suggest that TSLP acts directly on osteoclast precursors to suppress osteoclastogenesis. Osteoblasts, along with other TSLP-producing cells, may therefore contribute to the inhibition of osteoclastogenesis under inflammatory conditions.


Assuntos
Citocinas/metabolismo , Osteogênese , Ligante RANK/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Linfopoietina do Estroma do Timo
9.
J Clin Invest ; 130(7): 3919-3935, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32240120

RESUMO

A common variant in the RAB27A gene in adults was recently found to be associated with the fractional exhaled nitric oxide level, a marker of eosinophilic airway inflammation. The small GTPase Rab27 is known to regulate intracellular vesicle traffic, although its role in allergic responses is unclear. We demonstrated that exophilin-5, a Rab27-binding protein, was predominantly expressed in both of the major IL-33 producers, lung epithelial cells, and the specialized IL-5 and IL-13 producers in the CD44hiCD62LloCXCR3lo pathogenic Th2 cell population in mice. Exophilin-5 deficiency increased stimulant-dependent damage and IL-33 secretion by lung epithelial cells. Moreover, it enhanced IL-5 and IL-13 production in response to TCR and IL-33 stimulation from a specific subset of pathogenic Th2 cells that expresses a high level of IL-33 receptor, which exacerbated allergic airway inflammation in a mouse model of asthma. Mechanistically, exophilin-5 regulates extracellular superoxide release, intracellular ROS production, and phosphoinositide 3-kinase activity by controlling intracellular trafficking of Nox2-containing vesicles, which seems to prevent the overactivation of pathogenic Th2 cells mediated by IL-33. This is the first report to our knowledge to establish the significance of the Rab27-related protein exophilin-5 in the development of allergic airway inflammation, and provides insights into the pathophysiology of asthma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Asma/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Interleucina-33/imunologia , Células Th2/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Asma/genética , Asma/patologia , Modelos Animais de Doenças , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/genética , Camundongos , Camundongos Knockout , NADPH Oxidase 2/genética , NADPH Oxidase 2/imunologia , Espécies Reativas de Oxigênio/imunologia , Células Th2/patologia
10.
Sci Rep ; 9(1): 17067, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745167

RESUMO

IL-25, a member of the IL-17 family of cytokines, is known to enhance type 2 immune responses, but suppress type 3 (IL-17A)-mediated immune responses. Mice deficient in IL-1 receptor antagonist (Il1rn-/- mice) have excessive IL-1 signaling, resulting in spontaneous development of IL-1-, TNF- and IL-17A-dependent aortitis. We found that expression of II25 mRNA was increased in the aortae of Il1rn-/- mice, suggesting that IL-25 may suppress development of IL-1-, TNF- and IL-17A-dependent aortitis in Il1rn-/- mice by inhibiting type 3-mediated immune responses. However, we unexpectedly found that Il25-/-Il1rn-/- mice showed attenuated development of aortitis, accompanied by reduced accumulation of inflammatory cells such as dendritic cells, macrophages and neutrophils and reduced mRNA expression of Il17a and Tnfa-but not Il4 or Il13-in local lesions compared with Il1rn-/- mice. Tissue-, but not immune cell-, derived IL-25 was crucial for development of aortitis. IL-25 enhanced IL-1ß and TNF production by IL-25 receptor-expressing dendritic cells and macrophages, respectively, at inflammatory sites of aortae of Il1rn-/- mice, contributing to exacerbation of development of IL-1-, TNF- and IL-17A-dependent aortitis in those mice. Our findings suggest that neutralization of IL-25 may be a potential therapeutic target for aortitis.


Assuntos
Aortite/imunologia , Doenças Autoimunes/imunologia , Proteína Antagonista do Receptor de Interleucina 1/genética , Interleucinas/imunologia , Animais , Aortite/genética , Aortite/patologia , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Células Dendríticas/imunologia , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Interleucina-17/genética , Interleucina-1beta/metabolismo , Interleucinas/genética , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neutrófilos/imunologia , RNA Mensageiro/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
Biochem Biophys Res Commun ; 518(2): 331-336, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31421832

RESUMO

Interleukin-33 (IL-33) is a nuclear-associated cytokine of the IL-1 family. IL-33 and its receptor ST2 axis exert conflicting anti-tumor and pro-tumor effects in various tumors. In this study, we examined the role of endogenously produced IL-33 in the colon-26 tumor model, in which involvement of the IL-33:ST2 pathway was negligible on the tumor side. We found that the generation of regulatory T cells (Tregs) and CD8+ T cells, and IFN-γ expression by both CD4+ and CD8+ T cells (T cell activation) were impaired in IL-33-deficient mice. Overall antitumor responses, assessed by tumor growth and IFN-γ expression by tumor-infiltrating CD8+ T cells, were also impaired, even after Treg adjustment prior to tumor inoculation. These results indicate that endogenous IL-33 augmented CD8+ T cell-mediated antitumor responses in this colon carcinoma model, with higher CD8+ T cell-infiltration and overcoming pro-tumor effects by increased Tregs. Exogenous application of IL-33 into the tumors did not enhance CD8+ T cell-mediated antitumor responses despite marked elevation of innate responses showing upregulation of proinflammatory cytokine/chemokine expression, neutrophil recruitment, and dendritic cell activation. Our results suggest a dual role for endogenous IL-33 in antitumor responses and suggest that the balance of CD8+ T cells:Tregs in the tumor microenvironment is one of key factors for estimating the contribution of IL-33-mediated antitumor responses. Therefore, the development of IL-33-based cancer immunotherapy may require a target cell-specific approach.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/imunologia , Interleucina-33/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Feminino , Técnicas de Inativação de Genes , Humanos , Interleucina-33/genética , Camundongos Endogâmicos BALB C , Camundongos Knockout
12.
Cell Rep ; 28(1): 202-217.e7, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269440

RESUMO

Complex interactions between immune cells are an important component in the induction of obesity. Here, we show that Il2rg-/-Rag2-/- mice lacking all lymphocytes are resistant to diet-induced obesity. Transplantation of bone marrow cells from Rag2-/- mice, which lack only acquired immune cells, into Il2rg-/-Rag2-/- mice abolishes this resistance, indicating a role for innate lymphoid cells (ILCs) in this process. Mice lacking ILC2 or ILC3 cells, but not natural killer cells, are resistant to obesity. Adoptive transfer of naive ILC2s isolated from the small intestine (SI), but not ILC2s from white adipose tissue (WAT), restores the induction of diet-induced obesity in Il2rg-/-Rag2-/- mice. Analysis of transcriptional differences reveals that SI-ILC2s express higher levels of IL-2 than do WAT-ILC2s and that blockade of IL-2 signaling impairs weight gain and reduces the populations of ILC2s and ILC3s in the SI, suggesting a role for the IL-2/ILC2/3 axis in the induction of obesity.


Assuntos
Tecido Adiposo Branco/citologia , Interleucina-2/metabolismo , Intestino Delgado/citologia , Linfócitos/citologia , Linfócitos/metabolismo , Obesidade/imunologia , Tecido Adiposo Branco/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica , Microbioma Gastrointestinal/genética , Imunidade Inata , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Intestino Delgado/metabolismo , Células Matadoras Naturais/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Cell ; 176(5): 982-997.e16, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30712873

RESUMO

Immune cells and epithelium form sophisticated barrier systems in symbiotic relationships with microbiota. Evidence suggests that immune cells can sense microbes through intact barriers, but regulation of microbial commensalism remain largely unexplored. Here, we uncovered spatial compartmentalization of skin-resident innate lymphoid cells (ILCs) and modulation of sebaceous glands by a subset of RORγt+ ILCs residing within hair follicles in close proximity to sebaceous glands. Their persistence in skin required IL-7 and thymic stromal lymphopoietin, and localization was dependent on the chemokine receptor CCR6. ILC subsets expressed TNF receptor ligands, which limited sebocyte growth by repressing Notch signaling pathway. Consequently, loss of ILCs resulted in sebaceous hyperplasia with increased production of antimicrobial lipids and restricted commensalism of Gram-positive bacterial communities. Thus, epithelia-derived signals maintain skin-resident ILCs that regulate microbial commensalism through sebaceous gland-mediated tuning of the barrier surface, highlighting an immune-epithelia circuitry that facilitates host-microbe symbiosis.


Assuntos
Linfócitos/imunologia , Glândulas Sebáceas/metabolismo , Glândulas Sebáceas/microbiologia , Animais , Bactérias/metabolismo , Citocinas/metabolismo , Epitélio/imunologia , Folículo Piloso/metabolismo , Folículo Piloso/microbiologia , Imunidade Inata , Interleucina-7/metabolismo , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/imunologia , Receptores CCR6/metabolismo , Receptores Notch/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Glândulas Sebáceas/imunologia , Pele/metabolismo , Fenômenos Fisiológicos da Pele , Simbiose , Linfopoietina do Estroma do Timo
14.
J Allergy Clin Immunol ; 143(6): 2190-2201.e9, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30682454

RESUMO

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) play critical roles in induction and exacerbation of allergic airway inflammation. Thus clarification of the mechanisms that underlie regulation of ILC2 activation has received significant attention. Although innate lymphoid cells are divided into 3 major subsets that mirror helper effector T-cell subsets, counterpart subsets of regulatory T cells have not been well characterized. OBJECTIVE: We sought to determine the factors that induce regulatory innate lymphoid cells (ILCregs). METHODS: IL-10+ ILCregs induced from ILC2s by using retinoic acid (RA) were analyzed with RNA-sequencing and flow cytometry. ILCregs were evaluated in human nasal tissue from healthy subjects and patients with chronic rhinosinusitis with nasal polyps and lung tissue from house dust mite- or saline-treated mice. RESULTS: RA induced IL-10 secretion by human ILC2s but not type 2 cytokines. IL-10+ ILCregs, which were converted from ILC2s by means of RA stimulation, expressed a regulatory T cell-like signature with expression of IL-10, cytotoxic T lymphocyte-associated protein 4, and CD25, with downregulated effector type 2-related markers, such as chemoattractant receptor-homologous molecule on TH2 cells and ST2, and suppressed activation of CD4+ T cells and ILC2s. ILCregs were rarely detected in human nasal tissue from healthy subjects or lung tissue from saline-treated mice, but numbers were increased in nasal tissue from patients with chronic rhinosinusitis with nasal polyps and in lung tissue from house dust mite-treated mice. Enzymes for RA synthesis were upregulated in airway epithelial cells during type 2 inflammation in vivo and by IL-13 in vitro. CONCLUSION: We have identified a unique immune regulatory and anti-inflammatory pathway by which RA converts ILC2s to ILCregs. Interactions between airway epithelial cells and ILC2s play an important roles in the generation of ILCregs.


Assuntos
Anti-Inflamatórios/farmacologia , Linfócitos/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Linhagem Celular , Citocinas/imunologia , Células Epiteliais/imunologia , Humanos , Imunidade Inata , Pulmão/imunologia , Linfócitos/imunologia , Camundongos Endogâmicos C57BL , Seios Paranasais/imunologia
15.
Neuroscience ; 385: 75-89, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29906552

RESUMO

Interleukin-33 (IL-33), a novel member of the IL-1 family, expressed in many tissue and cell types, is involved in inflammation and immune functions. Previous studies suggest that IL-33 may play a role in ischemic stroke. Here, we evaluated the effect of IL-33 in cerebral ischemia-reperfusion-induced injury and investigated its underlying mechanism. Our data indicated that IL-33 deficiency exacerbated the neurological dysfunction caused by cerebral ischemia-reperfusion injury in mice and led to the formation of larger cerebral infarct volume as shown by 2,3,5-triphenyltetrazolium chloride staining and magnetic resonance imaging. Furthermore, the M1 and M2 macrophage-like microglial immune responses with decreased expression of the corresponding cytokines were seen in IL-33-deficient mice. IL-33 deficiency led to more biased to M2-like activities. The aggravated cerebral ischemia-reperfusion injury in IL-33-deficient mice is partially restored by intracerebroventricular injection of IL-33. These data suggest that IL-33 promotes the amplification of macrophage polarization and cytokine production associated with M2 macrophage-like microglial immune phenotype, which may contribute to the protective effects in the ischemic stroke, and that IL-33 may be a potential therapeutic target for ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Interleucina-33/metabolismo , Microglia/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/genética , Citocinas/metabolismo , Interleucina-33/genética , Interleucina-33/farmacologia , Interleucina-33/uso terapêutico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Microglia/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética
16.
J Allergy Clin Immunol ; 141(1): 300-310.e11, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28392332

RESUMO

BACKGROUND: Bronchial epithelial barrier leakiness and type 2 innate lymphoid cells (ILC2s) have been separately linked to asthma pathogenesis; however, the influence of ILC2s on the bronchial epithelial barrier has not been investigated previously. OBJECTIVE: We investigated the role of ILC2s in the regulation of bronchial epithelial tight junctions (TJs) and barrier function both in bronchial epithelial cells of asthmatic patients and healthy subjects and general innate lymphoid cell- and ILC2-deficient mice. METHODS: Cocultures of human ILC2s and bronchial epithelial cells were used to determine transepithelial electrical resistance, paracellular flux, and TJ mRNA and protein expressions. The effect of ILC2s on TJs was examined by using a murine model of IL-33-induced airway inflammation in wild-type, recombination-activating gene 2 (Rag2)-/-, Rag2-/-Il2rg-/-, and Rorasg/sg mice undergoing bone marrow transplantation to analyze the in vivo relevance of barrier disruption by ILC2s. RESULTS: ILC2s significantly impaired the epithelial barrier, as demonstrated by reduced transepithelial electrical resistance and increased fluorescein isothiocyanate-dextran permeability in air-liquid interface cultures of human bronchial epithelial cells. This was in parallel to decreased mRNAs and disrupted protein expression of TJ proteins and was restored by neutralization of IL-13. Intranasal administration of recombinant IL-33 to wild-type and Rag2-/- mice lacking T and B cells triggered TJ disruption, whereas Rag2-/-Il2rg-/- and Rorasg/sg mice undergoing bone marrow transplantation that lack ILC2s did not show any barrier leakiness. Direct nasal administration of IL-13 was sufficient to induce deficiency in the TJ barrier in the bronchial epithelium of mice in vivo. CONCLUSION: These data highlight an essential mechanism in asthma pathogenesis by demonstrating that ILC2s are responsible for bronchial epithelial TJ barrier leakiness through IL-13.


Assuntos
Asma/imunologia , Asma/metabolismo , Imunidade Inata , Interleucina-13/metabolismo , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Junções Íntimas/metabolismo , Animais , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Humanos , Interleucina-13/antagonistas & inibidores , Camundongos , Camundongos Transgênicos , Muco/metabolismo , Mucosa Respiratória/patologia
17.
Sci Rep ; 7(1): 4298, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28655892

RESUMO

Sepsis is a serious clinical problem. Negative regulation of innate immunity is associated with sepsis progression, but the underlying mechanisms remains unclear. Here we show that the receptor CD300f promotes disease progression in sepsis. CD300f -/- mice were protected from death after cecal ligation and puncture (CLP), a murine model of septic peritonitis. CD300f was highly expressed in mast cells and recruited neutrophils in the peritoneal cavity. Analysis of mice (e.g., mast cell-deficient mice) receiving transplants of wild-type or CD300f -/- mast cells or neutrophils indicated that CD300f deficiency did not influence intrinsic migratory abilities of neutrophils, but enhanced neutrophil chemoattractant production (from mast cells and neutrophils) in the peritoneal cavity of CLP-operated mice, leading to robust accumulation of neutrophils which efficiently eliminated Escherichia coli. Ceramide-CD300f interaction suppressed the release of neutrophil chemoattractants from Escherichia coli-stimulated mast cells and neutrophils. Administration of the reagents that disrupted the ceramide-CD300f interaction prevented CLP-induced sepsis by stimulating neutrophil recruitment, whereas that of ceramide-containing vesicles aggravated sepsis. Extracellular concentrations of ceramides increased in the peritoneal cavity after CLP, suggesting a possible role of extracellular ceramides, CD300f ligands, in the negative-feedback suppression of innate immune responses. Thus, CD300f is an attractive target for the treatment of sepsis.


Assuntos
Ceramidas/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Peritonite/etiologia , Peritonite/metabolismo , Receptores Imunológicos/metabolismo , Sepse/etiologia , Sepse/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Biópsia , Ceramidas/antagonistas & inibidores , Fatores Quimiotáticos/biossíntese , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Masculino , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Neutrófilos/patologia , Peritonite/mortalidade , Peritonite/patologia , Receptores Imunológicos/antagonistas & inibidores , Sepse/mortalidade , Sepse/patologia
18.
Nat Med ; 23(5): 611-622, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28394333

RESUMO

Heart failure is a complex clinical syndrome characterized by insufficient cardiac function. In addition to abnormalities intrinsic to the heart, dysfunction of other organs and dysregulation of systemic factors greatly affect the development and consequences of heart failure. Here we show that the heart and kidneys function cooperatively in generating an adaptive response to cardiac pressure overload. In mice subjected to pressure overload in the heart, sympathetic nerve activation led to activation of renal collecting-duct (CD) epithelial cells. Cell-cell interactions among activated CD cells, tissue macrophages and endothelial cells within the kidney led to secretion of the cytokine CSF2, which in turn stimulated cardiac-resident Ly6Clo macrophages, which are essential for the myocardial adaptive response to pressure overload. The renal response to cardiac pressure overload was disrupted by renal sympathetic denervation, adrenergic ß2-receptor blockade or CD-cell-specific deficiency of the transcription factor KLF5. Moreover, we identified amphiregulin as an essential cardioprotective mediator produced by cardiac Ly6Clo macrophages. Our results demonstrate a dynamic interplay between the heart, brain and kidneys that is necessary for adaptation to cardiac stress, and they highlight the homeostatic functions of tissue macrophages and the sympathetic nervous system.


Assuntos
Adaptação Fisiológica/imunologia , Encéfalo/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Coração/fisiopatologia , Rim/fisiopatologia , Macrófagos/imunologia , Miocárdio/imunologia , Sistema Nervoso Simpático/fisiopatologia , Adaptação Fisiológica/genética , Antagonistas Adrenérgicos beta , Anfirregulina/metabolismo , Animais , Aorta/cirurgia , Arginina Vasopressina/metabolismo , Western Blotting , Transplante de Medula Óssea , Encéfalo/fisiologia , Calgranulina A , Calgranulina B/farmacologia , Ecocardiografia , Células Endoteliais , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Taxa de Filtração Glomerular , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Coração/fisiologia , Imuno-Histoquímica , Túbulos Renais Coletores/citologia , Fatores de Transcrição Kruppel-Like/genética , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Norepinefrina/metabolismo , Norepinefrina/urina , Reação em Cadeia da Polimerase em Tempo Real , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética , Artéria Renal/inervação , Estresse Fisiológico , Simpatectomia , Fator de Necrose Tumoral alfa/imunologia
19.
Proc Natl Acad Sci U S A ; 114(5): E741-E750, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096407

RESUMO

Mice deficient in the transcriptional repressor B-cell CLL/lymphoma 6 (Bcl6) exhibit similar T helper 2 (TH2) immune responses as patients with allergic diseases. However, the molecular mechanisms underlying Bcl6-directed regulation of TH2 cytokine genes remain unclear. We identified multiple Bcl6/STAT binding sites (BSs) in TH2 cytokine gene loci. We found that Bcl6 is modestly associated with the BSs, and it had no significant effect on cytokine production in newly differentiated TH2 cells. Contrarily, in memory TH2 (mTH2) cells derived from adaptively transferred TH2 effectors, Bcl6 outcompeted STAT5 for binding to TH2 cytokine gene loci, particularly Interleukin4 (Il4) loci, and attenuated GATA binding protein 3 (GATA3) binding to highly conserved intron enhancer regions in mTH2 cells. Bcl6 suppressed cytokine production epigenetically in mTH2 cells to negatively tune histone acetylation at TH2 cytokine gene loci, including Il4 loci. In addition, IL-33, a pro-TH2 cytokine, diminished Bcl6's association with loci to which GATA3 recruitment was inversely augmented, resulting in altered IL-4, but not IL-5 and IL-13, production in mTH2 cells but no altered production in newly differentiated TH2 cells. Use of a murine asthma model that generates high levels of pro-TH2 cytokines, such as IL-33, suggested that the suppressive function of Bcl6 in mTH2 cells is abolished in severe asthma. These findings indicate a role of the interaction between TH2-promoting factors and Bcl6 in promoting appropriate IL-4 production in mTH2 cells and suggest that chronic allergic diseases involve the TH2-promoting factor-mediated functional breakdown of Bcl6, resulting in allergy exacerbation.


Assuntos
Asma/imunologia , Citocinas/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Células Th2/imunologia , Animais , Histonas/metabolismo , Imunoglobulina E/sangue , Lipopolissacarídeos/imunologia , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Ovalbumina/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/genética
20.
J Dermatol Sci ; 85(2): 106-114, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27839630

RESUMO

BACKGROUND: Skin is the outermost tissue of the human body, and works as a mechanical, chemical, and biological barrier. The epidermis is the uppermost layer of the skin, and keratinocytes constitute the majority of epidermal cells. Wounds are disruptions of skin integrity, and cause tremendous disadvantages to humans; accordingly, rapid wound healing is very important. Interleukin (IL)-33 is expressed in barrier tissue cells, such as epithelial and endothelial cells. Upon injury, IL-33 is released to stimulate immune cells, functioning as an "alarmin." ST2 is a receptor for IL-33; its soluble form (s)ST2 acts as a decoy receptor and competes for IL-33 binding. OBJECTIVES: We aimed to clarify the role of IL-33 in wound healing. MATERIALS AND METHODS: Wild-type (WT), IL-33 knockout (IL33 KO) mice, and sST2 transgenic (Tg) mice were wounded with a 4-mm punch, and the wound healing process was compared. Immunohistochemical analyses were performed to detect macrophages, neutrophils, and mast cells. Total RNA was extracted from the skin samples and real-time PCR was performed. An in vitro scratch wound assay was performed. RESULTS: Wound healing was delayed in IL33 KO mice compared to WT mice, while wound healing in sST2 Tg mice was comparable to that of WT mice. A histological examination showed delayed elongation of the epidermal tongue in IL-33 KO mice. An immunohistochemical study revealed prolonged neutrophilic infiltration at a later stage in IL-33 KO mice. IL-6, IL-1ß, and CXCL1 transcripts were more abundant in the wounds of IL-33 KO mice than WT mice. Intraperitoneal administration of an NFκB inhibitor to IL-33 KO mice normalized the delayed wound healing and the enhanced expression of IL-6 in IL-33 KO mice. Epidermal keratinocytes from IL-33 KO mice showed delayed wound closure compared to those from WT mice. CONCLUSION: Our results indicate that nuclear IL-33, but not IL-33 as a cytokine, has beneficial effects on wound healing in mice, probably by suppressing NFκB to inhibit excessive inflammation and by maintaining keratinocyte proliferation or migration for epithelialization.


Assuntos
Núcleo Celular/metabolismo , Células Epidérmicas , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Queratinócitos/metabolismo , Cicatrização/fisiologia , Animais , Epiderme/patologia , Humanos , Imuno-Histoquímica , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/genética , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Cultura Primária de Células , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA