Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Biochem ; 172(6): 365-376, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36200927

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major cause of mortality worldwide, and pulmonary epithelial cell apoptosis is regarded as one of the most important factors in its pathogenesis. Here, we examined the molecular mechanisms of apoptosis caused by cigarette smoke (CS). In the normal bronchial epithelium cell line BEAS-2B, a CS extract markedly induced apoptosis together with transient early growth response 1 (EGR1) protein expression, which is activated over time via the aryl hydrocarbon receptor (AHR). The CS extract-induced apoptosis decreased cell count of BEAS-2B cells and was significantly reversed by knockdown of either EGR1 or AHR. In vivo, the CS extract caused alveolar wall destruction, mimicking COPD, 1 week after intrathoracic injection. Bronchoalveolar lavage fluid (BALF) from the CS extract-treated mice contained massive numbers of apoptotic epithelial cells. Furthermore, it was found that aminoanthracene induced EGR1 expression and cell apoptosis. By contrast, the AHR antagonist stemregenin 1 (SR1) restored apoptosis upon CS treatment. These results suggest that aryl hydrocarbons, such as aminoanthracene, induce EGR1 expression via the AHR, resulting in cell apoptosis and that this can be prevented by administration of an antagonist of AHR.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce , Nicotiana , Doença Pulmonar Obstrutiva Crônica , Fumaça , Animais , Camundongos , Apoptose , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Nicotiana/efeitos adversos , Fumaça/efeitos adversos , Humanos , Linhagem Celular
3.
Biochem Biophys Rep ; 24: 100865, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294641

RESUMO

Heat-Not-Burn (HNB) products, generating vapor without combusting tobacco leaves, have been developed with the expectation that the number and quantity of chemicals in the vapor of these products would be reduced compared with the smoke from conventional combustible cigarettes. However, whether the lower chemical levels correlate with lower toxicity remains to be determined. Here we examined differences in the biological effects of conventional cigarette smoke (CS) and two HNB products, Ploom TECH and Ploom TECH+, using the cultured cancer cell line A549 and the normal bronchial epithelium cell line BEAS-2B. The conventional CS 3R4F extract (0.5%) markedly decreased cell proliferation of both A549 and BEAS-2B cells; however, 0.5% extracts of these commercially available HNB products did not affect cell growth. To determine the cause of decreased cell proliferation, a TUNEL assay was performed, and the results indicated that apoptosis had occurred in both A549 and BEAS-2B cells at 24 h after exposure to 3R4F. To further explore the effect of CS on epigenetics, we performed western blotting to detect histone H2A phosphorylation, which is known to affect transcriptional regulation. Only the 3R4F extract decreased histone H2A phosphorylation in both A549 and BEAS-2B cells. Next, we examined alterations in gene expression after treatment of A549 cells with Ploom TECH, Ploom TECH+, or 3R4F extracts. It was found that 339, 107, and 103 genes were upregulated more than 2 fold in A549 cells treated with 3R4F, Ploom TECH, or Ploom TECH + extracts, respectively. Among the 339 genes that were upregulated in response to 3R4F, we focused on EGR1, FOS, and FOSB, since they were upregulated more than 100 fold, which was confirmed using RT-qPCR. These results suggest that CS, but not HNB products, cause epigenetic disruption and cell apoptosis, possibly by elevating transcription of genes such as EGR1.

4.
Biochem Biophys Res Commun ; 511(3): 644-649, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30826054

RESUMO

It is well known that hepatocytes regenerate after liver injury, although it is difficult to reproduce this phenomenon in vitro. The goal of this research was to determine the factors that stimulate proliferation of primary mouse hepatocytes (PMHs) in vitro. We first tested knockdown (KD) of tumor protein 53 (p53) alone as well as partial hepatectomy (PH, performed 72 h prior to PMHs preparation) alone. However, neither intervention stimulated hepatocyte proliferation during the 72-h observation period in vitro. We then tested the combination of p53 KD with PH and found that these interventions together stimulated cell proliferation in vitro. Under these latter conditions we analyzed gene expression of these cells by mRNA sequencing (RNA-seq) and microRNA sequencing (miRNA-seq). TargetScan analysis, which determines the relationship between microRNAs and gene expression, found a relationship between downregulated mmu-mir-222 (miR-222) and upregulated genes such as mitogen-activated protein kinase kinase kinase 2 (Map3k2). To confirm this relationship, we performed miR-222 KD and overexpression (OE) and observed the expected changes in target gene expression. Furthermore, the finding that miR-222 KD or OE stimulates or suppresses, respectively, hepatocyte proliferation is well explained by the association between miR-222 and its target genes, which stimulate growth. Our results suggest that miR-222 is one of the key factors regulating PMH proliferation in vitro.


Assuntos
Hepatócitos/citologia , MicroRNAs/genética , Animais , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Hepatócitos/metabolismo , MAP Quinase Quinase Quinase 2/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
5.
Genes Cells ; 23(10): 828-838, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30112853

RESUMO

Histone H2A phosphorylation plays a role both in chromatin condensation during mitosis and in transcriptional activation during the G1/S transition. Bub1 and NHK1/VRK1 have been identified as histone H2A kinases. However, little is known about the importance of histone H2A phosphorylation in chromosome segregation. Here, we expressed recombinant hBUB1 and confirmed that it phosphorylates histone H2A T120 in the in vitro-assembled nucleosome. Knockdown (KD) of BUB1 decreases bulk H2A T120 phosphorylation in HeLa cells, whereas hBUB1 is upregulated during mitosis, which corresponds with H2A T120 phosphorylation. ChIP-qPCR of the DXZ1 centromeric and γ-ALR pericentromeric region showed that BUB1 localizes to this region and increases local H2A T120 phosphorylation during M phase. BUB1 KD did not induce apoptosis but increased the M phase cell population, as detected by flow cytometry. BUB1 KD also caused an abnormal metaphase and telophase, resulting in multinucleated cells and impaired cancer cell growth both in vitro and in vivo. Over-expression of the histone H2A T120D or T120E mutations, which mimic phosphorylated threonine, decreased the number of multinucleated cells caused by BUB1 KD. These results strengthen the apparent importance of BUB1-mediated H2A T120 phosphorylation in normal mitosis.


Assuntos
Segregação de Cromossomos/fisiologia , Histonas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Centrômero/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/genética , Técnicas de Silenciamento de Genes/métodos , Células HeLa , Heterocromatina , Histonas/metabolismo , Humanos , Interfase , Cinetocoros/metabolismo , Mitose , Fosforilação , Treonina
6.
Biochem Biophys Res Commun ; 501(4): 833-837, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29684346

RESUMO

Interferon regulatory factor (IRF) 4 and the proto-oncogene c-Rel cooperate in growth and antiviral drug resistance of adult T-cell leukemia/lymphoma (ATLL). To elucidate the target of IRF4 and c-Rel in ATLL, we determined the simultaneous binding sites of IRF4 and c-Rel using ChIP-seq technology. Nine genes were identified within 2 kb of binding sites, including MIR3662. Expression of miR-3662 was regulated by IRF4, and to a lesser extent by c-Rel. Cell proliferation was inhibited by knockdown of miR-3662 and expression of miR-3662 was correlated with antiviral drug resistance in ATLL cell lines. Thus, miR-3662 represents a target for therapies against ATLL.


Assuntos
Farmacorresistência Viral/genética , Regulação Leucêmica da Expressão Gênica , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/virologia , MicroRNAs/genética , Adulto , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Fatores Reguladores de Interferon/metabolismo , Leucemia-Linfoma de Células T do Adulto/patologia , MicroRNAs/metabolismo , Ligação Proteica/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-rel/metabolismo
7.
Mol Cell ; 64(1): 176-188, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27716482

RESUMO

How deregulation of chromatin modifiers causes malignancies is of general interest. Here, we show that histone H2A T120 is phosphorylated in human cancer cell lines and demonstrate that this phosphorylation is catalyzed by hVRK1. Cyclin D1 was one of ten genes downregulated upon VRK1 knockdown in two different cell lines and showed loss of H2A T120 phosphorylation and increased H2A K119 ubiquitylation of its promoter region, resulting in impaired cell growth. In vitro, H2A T120 phosphorylation and H2A K119 ubiquitylation are mutually inhibitory, suggesting that histone phosphorylation indirectly activates chromatin. Furthermore, expression of a phosphomimetic H2A T120D increased H3 K4 methylation. Finally, both VRK1 and the H2A T120D mutant histone transformed NIH/3T3 cells. These results suggest that histone H2A T120 phosphorylation by hVRK1 causes inappropriate gene expression, including upregulated cyclin D1, which promotes oncogenic transformation.


Assuntos
Transformação Celular Neoplásica/genética , Ciclina D1/genética , Regulação Neoplásica da Expressão Gênica , Histonas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cromatina/química , Cromatina/metabolismo , Ciclina D1/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metilação , Camundongos , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Fosforilação , Protamina Quinase/genética , Protamina Quinase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Treonina/metabolismo , Ubiquitinação
9.
Biochem Biophys Res Commun ; 317(1): 259-64, 2004 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-15047177

RESUMO

The isoflavones genistein and daidzein and the daidzein metabolite equol have been reported to interact with estrogen receptors (ERs). Some studies indicate that they behave clinically like estrogen in some estrogen-deficiency diseases. However, the detailed molecular mechanism used by these compounds to create beneficial effects in patients with estrogen-related diseases has not been clarified. Using histone acetyltransferase (HAT) assay, we found that equol, genistein, and AglyMax had significant effects on ERalpha-mediated histone acetylation. Although 17beta-estradiol (E2)-dependent HAT activity of steroid receptor coactivators 2 (SRC2) and p300 mediated by ERbeta could be detected, it was weaker than that mediated by ERalpha. Equol, genistein, AglyMax, and daidzein all markedly stimulated ERbeta-mediated histone acetylation. On the other hand, anti-estrogenic compounds ICI 182,780 (ICI) and tamoxifen (TA) did not have an effect on HAT activity mediated by either ERalpha or ERbeta. Our data indicate that estrogenic ligands exert their effects by elevating histone acetylation and coactivator activity of ER, and suggest that the risk of estrogen-related diseases might be reduced by a sufficient amount of genistein or AglyMax supplements.


Assuntos
Estradiol/análogos & derivados , Histonas/metabolismo , Isoflavonas/farmacologia , Proteínas Nucleares/metabolismo , Receptores de Estrogênio/metabolismo , Transativadores/metabolismo , Acetilação/efeitos dos fármacos , Acetiltransferases/metabolismo , Animais , Linhagem Celular , Drosophila/química , Equol , Estradiol/metabolismo , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Fulvestranto , Genisteína/farmacologia , Histona Acetiltransferases , Histonas/química , Isoflavonas/química , Coativador 2 de Receptor Nuclear , Receptores de Estrogênio/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Spodoptera/citologia , Tamoxifeno/farmacologia , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA