Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 168(2): 49, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609880

RESUMO

Bovine viral diarrhea virus (BVDV) is a pathogen of commercial consequence in cattle. Although many modified live and killed vaccines are commercially available, their drawbacks precipitate the need for new effective vaccines. Virus-like particles (VLPs) are a safe and powerful technology used in several human and veterinary vaccines; however, it is difficult to produce large amounts of BVDV VLPs. In this study, we generated red-spotted grouper nervous necrosis virus (RGNNV) VLPs presenting the BVDV E2 protein (domain I to IIIb) of the Nose (BVDV-1) or KZ-91-CP (BVDV-2) strain by exploiting SpyTag/SpyCatcher technology. Mice immunized twice with 30 µg of RGNNV VLPs conjugated with 10 µg of E2 proteins of the Nose or KZ-91-CP strain with a 14-day interval elicited high (1:512,000 to 1:1,024,000) and moderate (1:25,600 to 1:102,400) IgG titers against E2 proteins of homologous and heterologous strains, respectively. In addition, this prime-boost regimen induced strong (1:800 to 1:3,200) and weak (~1:10) neutralization titers against homologous and heterologous BVDV strains, respectively. Our results indicate that conjugation of the E2 protein to RGNNV VLPs strongly enhances the antigenicity of the E2 protein and that RGNNV VLPs presenting the E2 protein are promising BVDV vaccine candidates.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Humanos , Bovinos , Animais , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Proteínas do Envelope Viral/genética , Diarreia
2.
Plant Direct ; 5(12): e368, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938941

RESUMO

pH homeostasis in the chloroplast is crucial for the control of photosynthesis and other metabolic processes in plants. Recently, nuclear-encoded Day-Length-dependent Delayed Greening1 (DLDG1) and Fluctuating-Light Acclimation Protein1 (FLAP1) that are required for the light-inducible optimization of plastidial pH in Arabidopsis thaliana were identified. DLDG1 and FLAP1 homologs are specifically conserved in oxygenic phototrophs, and a DLDG1 homolog, Ycf10, is encoded in the chloroplast genome in plant cells. However, the function of Ycf10 and its physiological significance are unknown. To address this, we constructed ycf10 tobacco Nicotiana tabacum mutants and characterized their phenotypes. The ycf10 tobacco mutants grown under continuous-light conditions showed a pale-green phenotype only in developing leaves, and it was suppressed in short-day conditions. The ycf10 mutants also induced excessive non-photochemical quenching (NPQ) compared with those in the wild-type at the induction stage of photosynthesis. These phenotypes resemble those of Arabidopsis dldg1 mutants, suggesting that they have similar functions. However, there are distinct differences between the two mutant phenotypes: The highly induced NPQ in tobacco ycf10 and the Arabidopsis dldg1 mutants are diminished and enhanced, respectively, with increasing duration of the fluctuating actinic-light illumination. Ycf10 and DLDG1 were previously shown to localize in chloroplast envelope-membranes, suggesting that Ycf10 and DLDG1 differentially control H+ exchange across these membranes in a light-dependent manner to control photosynthesis.

3.
Front Plant Sci ; 12: 717952, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497627

RESUMO

Nervous necrosis virus (NNV) is the causative agent of viral nervous necrosis (VNN), which is one of the most serious fish diseases leading to mass mortality in a wide range of fish species worldwide. Although a few injectable inactivated vaccines are commercially available, there is a need for more labor-saving, cost-effective, and fish-friendly immunization methods. The use of transgenic plants expressing pathogen-derived recombinant antigens as edible vaccines is an ideal way to meet these requirements. In this study, chloroplast genetic engineering was successfully utilized to overexpress the red-spotted grouper NNV capsid protein (RGNNV-CP). The RGNNV-CP accumulated at high levels in all young, mature, and old senescent leaves of transplastomic tobacco plants (averaging approximately 3 mg/g leaf fresh weight). The RGNNV-CP efficiently self-assembled into virus-like particles (RGNNV-VLPs) in the chloroplast stroma of the transgenic lines, which could be readily observed by in situ transmission electron microscopy. Furthermore, intraperitoneal injection and oral administration of the crudely purified protein extract containing chloroplast-derived RGNNV-VLPs provided the sevenband grouper fish with sufficient protection against RGNNV challenge, and its immunogenicity was comparable to that of a commercial injectable vaccine. These findings indicate that chloroplast-derived VLP vaccines may play a promising role in the prevention of various diseases, not only in fish but also in other animals, including humans.

4.
Protein Pept Lett ; 27(2): 168-175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31612816

RESUMO

BACKGROUND: Plastid-encoded eubacterial-type RNA polymerase (PEP) plays a critical role in the transcription of photosynthesis genes in chloroplasts. Notably, some of the reaction center genes, including psaA, psaB, psbA, and psbD genes, are differentially transcribed by PEP in mature chloroplasts. However, the molecular mechanism of promoter selection in the reaction center gene transcription by PEP is not well understood. OBJECTIVE: Sigma factor proteins direct promoter selection by a core PEP in chloroplasts as well as bacteria. AtSIG5 is a unique chloroplast sigma factor essential for psbD light-responsive promoter (psbD LRP) activity. To analyze the role of AtSIG5 in chloroplast transcription in more detail, we assessed the effect of AtSIG5 hyper-expression on the transcription of plastid-encoded genes in chloroplast transgenic plants. RESULTS: The chloroplast transgenic tobacco (CpOX-AtSIG5) accumulates AtSIG5 protein at extremely high levels in chloroplasts. Due to the extremely high-level expression of recombinant AtSIG5, most PEP holoenzymes are most likely to include the recombinant AtSIG5 in the CpOXAtSIG5 chloroplasts. Thus, we can assess the promoter preference of AtSIG5 in vivo. The overexpression of AtSIG5 significantly increased the expression of psbD LRP transcripts encoding PSII reaction center D2 protein and psaA/B operon transcripts encoding PSI core proteins. Furthermore, run-on transcription analyses revealed that AtSIG5 preferentially recognizes the psaA/B promoter, as well as the psbD LRP. Moreover, we found that psbD LRP is constitutively active in CpOX-AtSIG5 plants irrespective of light and dark. CONCLUSION: AtSIG5 probably plays a significant role in differential transcription of reaction center genes in mature chloroplasts.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/genética , Nicotiana/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Fator sigma/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Óperon , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Fator sigma/metabolismo , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
5.
Plant Cell ; 30(11): 2677-2703, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30309901

RESUMO

Chloroplasts import thousands of nucleus-encoded preproteins synthesized in the cytosol through the TOC and TIC translocons on the outer and inner envelope membranes, respectively. Preprotein translocation across the inner membrane requires ATP; however, the import motor has remained unclear. Here, we report that a 2-MD heteromeric AAA-ATPase complex associates with the TIC complex and functions as the import motor, directly interacting with various translocating preproteins. This 2-MD complex consists of a protein encoded by the previously enigmatic chloroplast gene ycf2 and five related nuclear-encoded FtsH-like proteins, namely, FtsHi1, FtsHi2, FtsHi4, FtsHi5, and FtsH12. These components are each essential for plant viability and retain the AAA-type ATPase domain, but only FtsH12 contains the zinc binding active site generally conserved among FtsH-type metalloproteases. Furthermore, even the FtsH12 zinc binding site is dispensable for its essential function. Phylogenetic analyses suggest that all AAA-type members of the Ycf2/FtsHi complex including Ycf2 evolved from the chloroplast-encoded membrane-bound AAA-protease FtsH of the ancestral endosymbiont. The Ycf2/FtsHi complex also contains an NAD-malate dehydrogenase, a proposed key enzyme for ATP production in chloroplasts in darkness or in nonphotosynthetic plastids. These findings advance our understanding of this ATP-driven protein translocation system that is unique to the green lineage of photosynthetic eukaryotes.


Assuntos
Proteínas de Cloroplastos/metabolismo , Proteínas de Plantas/metabolismo , Trifosfato de Adenosina/metabolismo , Cloroplastos/metabolismo , Malato Desidrogenase/metabolismo , Transporte Proteico
6.
J Biol Chem ; 289(22): 15631-41, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24722991

RESUMO

The guanosine 3',5'-bisdiphosphate (ppGpp) signaling system is shared by bacteria and plant chloroplasts, but its role in plants has remained unclear. Here we show that guanylate kinase (GK), a key enzyme in guanine nucleotide biosynthesis that catalyzes the conversion of GMP to GDP, is a target of regulation by ppGpp in chloroplasts of rice, pea, and Arabidopsis. Plants have two distinct types of GK that are localized to organelles (GKpm) or to the cytosol (GKc), with both enzymes being essential for growth and development. We found that the activity of rice GKpm in vitro was inhibited by ppGpp with a Ki of 2.8 µM relative to the substrate GMP, whereas the Km of this enzyme for GMP was 73 µM. The IC50 of ppGpp for GKpm was ∼10 µM. In contrast, the activity of rice GKc was insensitive to ppGpp, as was that of GK from bakers' yeast, which is also a cytosolic enzyme. These observations suggest that ppGpp plays a pivotal role in the regulation of GTP biosynthesis in chloroplasts through specific inhibition of GKpm activity, with the regulation of GTP biosynthesis in chloroplasts thus being independent of that in the cytosol. We also found that GKs of Escherichia coli and Synechococcus elongatus PCC 7942 are insensitive to ppGpp, in contrast to the ppGpp sensitivity of the Bacillus subtilis enzyme. Our biochemical characterization of GK enzymes has thus revealed a novel target of ppGpp in chloroplasts and has uncovered diversity among bacterial GKs with regard to regulation by ppGpp.


Assuntos
Bactérias/enzimologia , Cloroplastos/enzimologia , Guanosina Tetrafosfato/metabolismo , Guanilato Quinases/metabolismo , Ligases/metabolismo , Plantas/enzimologia , Arabidopsis/enzimologia , Arabidopsis/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Bactérias/genética , Sequência de Bases , Cloroplastos/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Guanilato Quinases/genética , Ligases/genética , Dados de Sequência Molecular , Oryza/enzimologia , Oryza/genética , Pisum sativum/enzimologia , Pisum sativum/genética , Plantas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transdução de Sinais/fisiologia , Synechococcus/enzimologia , Synechococcus/genética
7.
Biosci Biotechnol Biochem ; 77(10): 2140-3, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24096651

RESUMO

One of the most cost-effective methods of producing industrial enzymes is by the use of transgenic plants. We demonstrated successful high-level expression of a hyperthermostable archaeal ß-1,4-endoglucanase in mature tobacco leaves by transformation of chloroplasts by homologous recombination. The active recombinant enzyme was readily recovered not only from fresh but also from dried leaves.


Assuntos
Celulase/biossíntese , Celulase/química , Cloroplastos/genética , Engenharia Genética/métodos , Nicotiana/citologia , Pyrococcus horikoshii/enzimologia , Temperatura , Estabilidade Enzimática , Pyrococcus horikoshii/genética , Nicotiana/genética
8.
Plant J ; 73(5): 761-75, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23167462

RESUMO

Plants adapt to abiotic and biotic stresses by activating abscisic acid-mediated (ABA) abiotic stress-responsive and salicylic acid-(SA) or jasmonic acid-mediated (JA) biotic stress-responsive pathways, respectively. Although the abiotic stress-responsive pathway interacts antagonistically with the biotic stress-responsive pathways, the mechanisms that regulate these pathways remain largely unknown. In this study, we provide insight into the function of vascular plant one-zinc-finger proteins (VOZs) that modulate various stress responses in Arabidopsis. The expression of many stress-responsive genes was changed in the voz1voz2 double mutant under normal growth conditions. Consistent with altered stress-responsive gene expression, freezing- and drought-stress tolerances were increased in the voz1voz2 double mutant. In contrast, resistance to a fungal pathogen, Colletotrichum higginsianum, and to a bacterial pathogen, Pseudomonas syringae, was severely impaired. Thus, impairing VOZ function simultaneously conferred increased abiotic tolerance and biotic stress susceptibility. In a chilling stress condition, both the VOZ1 and VOZ2 mRNA expression levels and the VOZ2 protein level gradually decreased. VOZ2 degradation during cold exposure was completely inhibited by the addition of the 26S proteasome inhibitor, MG132, a finding that suggested that VOZ2 degradation is dependent on the ubiquitin/26S proteasome system. In voz1voz2, ABA-inducible transcription factor CBF4 expression was enhanced significantly even under normal growth conditions, despite an unchanged endogenous ABA content. A finding that suggested that VOZs negatively affect CBF4 expression in an ABA-independent manner. These results suggest that VOZs function as both negative and positive regulators of the abiotic and biotic stress-responsive pathways, and control Arabidopsis adaptation to various stress conditions.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Colletotrichum/fisiologia , Inibidores de Cisteína Proteinase/farmacologia , Regulação para Baixo , Secas , Congelamento , Perfilação da Expressão Gênica , Leupeptinas/farmacologia , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/genética , Estômatos de Plantas/microbiologia , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/fisiologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/microbiologia , Plântula/fisiologia , Estresse Fisiológico , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA