Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Peptides ; 156: 170846, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35905944

RESUMO

Neuromedin U (NMU) is a multifunctional neuropeptide implicated in regulation of smooth muscle contraction in the circulatory and digestive systems, energy homeostasis and the stress response, but especially food intake in vertebrates. Recent studies have indicated the possible involvement of NMU in the regulation of psychomotor activity in rodents. We have identified four cDNAs encoding three putative NMU variants (NMU-21, -25 and -38) from the goldfish brain and intestine. Recently, we have also purified these NMUs and the truncated C-terminal form NMU-9 from these tissues, and demonstrated their anorexigenic action in goldfish. However, there is no information on the brain localization of NMU-like immunoreactivity and the psychophysiological roles of NMU in fish. Here, we investigated the brain distribution of NMU-like immunoreactivity and found that it was localized throughout the fore- and mid-brains. We subsequently examined the effect of intracerebroventricular (ICV) administration of NMU-21, which is abundant only in the brain on psychomotor activity in goldfish. As goldfish prefer the lower to the upper area of a tank, we developed an upper/lower area preference test in a tank for evaluating the psychomotor activity of goldfish using a personal tablet device without an automatic behavior-tracking device. ICV administration of NMU-21 at 10 pmol g-1 body weight (BW) prolonged the time spent in the upper area of the tank, and this action mimicked that of ICV administration of the central-type benzodiazepine receptor (CBR) agonist tofisopam at 100 pmol g-1 BW. These results suggest that NMU-21 potently induces anxiolytic-like action in the goldfish brain.


Assuntos
Ansiolíticos , Neuropeptídeos , Hormônios Peptídicos , Animais , Encéfalo/metabolismo , Carpa Dourada/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Receptores de GABA-A
2.
Gen Comp Endocrinol ; 299: 113586, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32828811

RESUMO

Urotensin II (UII) is involved, via the UII receptor (UTR), in many physiological and pathological processes, including vasoconstriction, locomotion, osmoregulation, immune response, and metabolic syndrome. In silico studies have revealed the presence of four or five distinct UTR (UTR1-UTR5) gene sequences in nonmammalian vertebrates. However, the functionality of these receptor subtypes and their associations to signaling pathways are unclear. In this study, full-length cDNAs encoding four distinct UTR subtypes (UTR1, UTR3, UTR4, and UTR5) were isolated from the western clawed frog (Xenopus tropicalis). In functional analyses, homologous Xenopus UII stimulation of cells expressing UTR1 or UTR5 induced intracellular calcoum mobilization and phosphorylation of extracellular signal-regulated kinase 1/2. Cells expressing UTR3 or UTR4 did not show this response. Furthermore, UII induced the phosphorylation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) through the UII-UTR1/5 system. However, intracellular cAMP accumulation was not observed, suggesting that UII-induced CREB phosphorylation is caused by a signaling pathway different from that involving Gs protein. In contrast, the administration of UII to cells increased the phosphorylation of guanine nucleotide exchange factor-H1 (GEF-H1) and myosin light chain 2 (MLC2) in all UTR subtypes. These results define four distinct UTR functional subtypes and are consistent with the molecular evolution of UTR subtypes in vertebrates. Further understanding of signaling properties associated with UTR subtypes may help in clarifying the functional roles associated with UII-UTR interactions in nonmammalian vertebrates.


Assuntos
Regulação da Expressão Gênica/genética , Urotensinas/metabolismo , Animais , Anuros , Transdução de Sinais
3.
Mol Neurobiol ; 57(4): 2101-2114, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31927724

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is abundantly expressed in the hypothalamus and contributes to hypothalamic functions, including appetite regulation. Although food intake is suggested to be decreased in PACAP (-/-) mice, the detailed mechanisms are still being discussed. We sought to investigate this link. The food consumption at 8 h after refeeding in the (-/-) mice who had fasted for 2 days was significantly lower than in the PACAP (+/+) mice. The nocturnal and daily food intake of (-/-) mice was significantly lower than those of (+/+) mice, but the diurnal food intake showed a tendency to increase. mRNA expression levels of agouti-related peptide (AgRP) were decreased, but those of proopiomelanocortin (POMC) were increased in the hypothalamus of (-/-) mice 4 h after refeeding. Furthermore, intracerebroventricular administration of a PACAP receptor antagonist, PACAP6-38 (1 nmol/4 µL/mouse), decreased food intake and body weight 1, 2, and 4 h after refeeding, as well as expression levels of AgRP at 4 h after refeeding in (+/+) mice. The selective overexpression of PACAP by the infection of an adeno-associated virus in the ventromedial hypothalamus (VMH) resulted in an increase in food intake and AgRP expression in the nocturnal period in addition to the increased food intake at 8 h after refeeding. These results suggest that food intake behavior in mice is triggered by the increase in PACAP expression in the VMH via modulation of AgRP expression in the hypothalamus, pointing to PACAP inhibition as a potential strategy for the development of anti-obesity drugs.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Comportamento Alimentar , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Proteína Relacionada com Agouti/genética , Animais , Ritmo Circadiano , Jejum , Camundongos , Neuropeptídeos/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
4.
Elife ; 82019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31566568

RESUMO

The molecular mechanisms by which environmental light conditions affect cerebellar development are incompletely understood. We showed that circadian disruption by light-at-night induced Purkinje cell death through pineal allopregnanolone (ALLO) activity during early life in chicks. Light-at-night caused the loss of diurnal variation of pineal ALLO synthesis during early life and led to cerebellar Purkinje cell death, which was suppressed by a daily injection of ALLO. The loss of diurnal variation of pineal ALLO synthesis induced not only reduction in pituitary adenylate cyclase-activating polypeptide (PACAP), a neuroprotective hormone, but also transcriptional repression of the cerebellar Adcyap1 gene that produces PACAP, with subsequent Purkinje cell death. Taken together, pineal ALLO mediated the effect of light on early cerebellar development in chicks.


Assuntos
Encéfalo/crescimento & desenvolvimento , Ritmo Circadiano , Luz , Glândula Pineal/fisiologia , Pregnanolona/metabolismo , Animais , Encéfalo/citologia , Células COS , Morte Celular , Galinhas , Chlorocebus aethiops , Masculino , Estimulação Luminosa , Células de Purkinje/citologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-31031705

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with potent suppressive effects on feeding behavior in rodents, chicken, and goldfish. Teleost fish express two PACAPs (PACAP1, encoded by the adcyap1a gene, and PACAP2, encoded by the adcyap1b gene) and two PACAP receptors (PAC1Rs; PAC1Ra, encoded by the adcyap1r1a gene, and PAC1Rb, encoded by the adcyap1r1b gene). However, the mRNA expression patterns of the two PACAPs and PAC1Rs, and the influence and relationship of the two PACAPs on feeding behavior in teleost fish remains unclear. Therefore, we first examined mRNA expression patterns of PACAP and PAC1R in tissue and brain. All PACAP and PAC1Rs mRNAs were dominantly expressed in the zebrafish brain. However, adcyap1a mRNA was also detected in the gut and testis. In the brain, adcyap1b and adcyap1r1a mRNA levels were greater than that of adcyap1a and adcyap1r1b, respectively. Moreover, adcyap1b and adcyap1r1a mRNA were dominantly expressed in telencephalon and diencephalon. The highest adcyap1a mRNA levels were detected in the brain stem and diencephalon, while the highest levels of adcyap1r1b were detected in the cerebellum. To clarify the relationship between PACAP and feeding behavior in the zebrafish, the effects of zebrafish (zf) PACAP1 or zfPACAP2 intracerebroventricular (ICV) injection were examined on food intake, and changes in PACAP mRNA levels were assessed against feeding status. Food intake was significantly decreased by ICV injection of zfPACAP1 (2 pmol/g body weight), zfPACAP2 (2 or 20 pmol/g body weight), or mammalian PACAP (2 or 20 pmol/g). Meanwhile, the PACAP injection group did not change locomotor activity. Real-time PCR showed adcyap1 mRNA levels were significantly increased at 2 and 3 h after feeding compared with the pre-feeding level, but adcyap1b, adcyap1r1a, and adcyap1r1b mRNA levels did not change after feeding. These results suggest that the expression levels and distribution of duplicated PACAP and PAC1R genes are different in zebrafish, but the anorexigenic effects of PACAP are similar to those seen in other vertebrates.

6.
J Mol Neurosci ; 68(3): 420-426, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29931503

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide/glucagon/secretin family of peptides. PACAP and its three receptor subtypes are expressed in neural tissues and in the eye, including the retina, cornea, and lacrimal gland. PACAP is known to exert pleiotropic effects on the central nervous system and in eye tissues where it plays important roles in protecting against dry eye. This review provides an overview of current knowledge regarding dry eye symptoms in aged animals and humans and the protective effects, mechanisms of action. In addition, we also refer to the development of a new preventive/therapeutic method by PACAP of dry eye patients.


Assuntos
Síndromes do Olho Seco/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Animais , Síndromes do Olho Seco/etiologia , Humanos
7.
Nihon Yakurigaku Zasshi ; 151(6): 232-238, 2018.
Artigo em Japonês | MEDLINE | ID: mdl-29887571

RESUMO

Dry eye syndrome is defined as a disorder of the tear film caused by either a decreased production in tears or a disruption to the stability of the complex tear film, which causes damage to the ocular surface. It has been developed the medicine for dry eye syndrome focusing anti-inflammation or mucin secretion, however, no treatment has been developed focusing on the effect of elevation of the lacrimal secretion. We recently identified that pituitary adenylate cyclase-activating polypeptide (PACAP)-null mice develop dry eye-like symptoms such as corneal keratinization and tear reduction. PACAP receptor (PAC1-R) immunoreactivity was observed in the acinar cells of the mouse lacrimal gland. PACAP eye drop significantly stimulated tear secretion level, and the effect was suppressed by pretreatment with PAC1-R antagonist or adenylate cyclase inhibitor. PACAP eye drop on the PACAP KO mouse significantly increased the tear secretion, and continuous eye drop suppressed progression of the corneal keratinization. PACAP eye drops increase aquaporin 5 (AQP5) levels in the membrane of acinar cells in lacrimal glands. AQP5 siRNA treatment significantly attenuates PACAP-induced tear secretion. Based on these results, PACAP might be clinically useful to treat dry eye disorder.


Assuntos
Transdução de Sinais , Lágrimas , Animais , Camundongos , Camundongos Knockout , Soluções Oftálmicas , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase
8.
J Headache Pain ; 19(1): 28, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29619773

RESUMO

Pituitary adenylate-cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide (VIP)/glucagon/secretin family. PACAP shows particularly high homology (~ 68%) to VIP. Because of the high homology of the amino acid sequences of PACAP and VIP, these peptides share three class B-G-protein coupled receptors: the PAC1-Receptor (PAC1-R), the VPAC1-Receptor (VPAC1-R) and VPAC2-Receptor (VPAC2-R). These receptors have high homology to each other, and their high homology is utilized for these discoveries. This review provides mainly an overview of the history of the discovery of PACAP and its three receptors.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Animais , Humanos
9.
Peptides ; 103: 40-47, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29535004

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multipotent neuropeptide with an amino acid sequence that is well conserved among vertebrates. In teleosts, including zebrafish, the PACAP gene (adcyap1) has been duplicated to yield adcyap1a (coding PACAP1) and adcyap1b (coding PACAP2). This study aims to determine the distribution of these PACAPs and their mRNAs in zebrafish. We generated a zebrafish PACAP2-specific antibody. Using real-time PCR, we observed that adcyap1b mRNA was primarily localized in the brain, with the highest level in the telencephalon, followed by the diencephalon. Using immunostaining of brain tissue samples, PACAP2 immunoreactivity was observed mainly in the telencephalon, hypothalamus, and cerebellum, and the immunopositive fibers formed a line to the habenula. PACAP2-immunopositive cells were observed in the ventral and dorsal regions of the telencephalon and in the hypothalamic nucleus of the diencephalon in the colchicine-injected brain. This distribution of PACAP2 suggests its involvement in higher brain functions in teleosts, such as learning and cognition, as well as instinctive behaviors such as feeding and emotional regulation.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Imuno-Histoquímica
10.
Anat Sci Int ; 91(4): 313-24, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27324639

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues of the eye, including the retina, cornea and lacrimal gland, and PACAP is known to exert pleiotropic effects throughout the central nervous system. This review provides an overview of current knowledge regarding the cell protective effects, mechanisms of action and therapeutic potential of PACAP in response to several types of eye injury.


Assuntos
Fármacos Neuroprotetores , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Animais , Córnea/metabolismo , Oftalmopatias/tratamento farmacológico , Humanos , Aparelho Lacrimal/metabolismo , Camundongos , Tecido Nervoso/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Retina/metabolismo
11.
Anat Rec (Hoboken) ; 299(9): 1293-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27339371

RESUMO

Xerostomia, or dry mouth, is a common syndrome that is generally treated with artificial saliva; however, no other effective methods have yet been established. Saliva secretion is mainly under the control of the autonomic nervous system. Pituitary adenylate cyclase-activating polypeptide (PACAP) is recognized as a multifunctional neuropeptide in various organs. In this study, we examined the effect of PACAP on saliva secretion, and detected the distribution of the PACAP type 1 receptor (PAC1R) in major salivary glands, including the parotid, submandibular, and sublingual glands, in 9-week-old male C57BL/6 mice. Intranasal administration of PACAP 38 increased the amount of saliva secreted, which was not inhibited by atropine pretreatment. Immunohistochemical analysis showed that PAC1R was distributed in the three major salivary glands. In the parotid and sublingual glands, PAC1R was detected in striated duct cells, whereas in the submandibular gland, a strong PAC1R immunoreaction was detected in tall columnar epithelial cells in the granular ducts (i.e., pillar cells), as well as in some striated duct cells. PACAP significantly increased the concentration of epidermal growth factor in saliva. These results suggest that PACAP directly regulates saliva secretion by controlling the absorption activity in the ducts, and that pillar cells regulate the function of granular epithelial cells in the granular duct, such as the secretion of growth factors into the saliva. Collectively, these results suggest the possibility of PACAP as a new effective treatment of xerostomia. Anat Rec, 299:1293-1299, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Saliva/metabolismo , Glândulas Salivares/efeitos dos fármacos , Animais , Fator de Crescimento Epidérmico/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Saliva/química , Glândulas Salivares/metabolismo
12.
Nat Commun ; 7: 12034, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27345595

RESUMO

Dry eye syndrome is caused by a reduction in the volume or quality of tears. Here, we show that pituitary adenylate cyclase-activating polypeptide (PACAP)-null mice develop dry eye-like symptoms such as corneal keratinization and tear reduction. PACAP immunoreactivity is co-localized with a neuronal marker, and PACAP receptor (PAC1-R) immunoreactivity is observed in mouse infraorbital lacrimal gland acinar cells. PACAP eye drops stimulate tear secretion and increase cAMP and phosphorylated (p)-protein kinase A levels in the infraorbital lacrimal glands that could be inhibited by pre-treatment with a PAC1-R antagonist or an adenylate cyclase inhibitor. Moreover, these eye drops suppress corneal keratinization in PACAP-null mice. PACAP eye drops increase aquaporin 5 (AQP5) levels in the membrane and pAQP5 levels in the infraorbital lacrimal glands. AQP5 siRNA treatment of the infraorbital lacrimal gland attenuates PACAP-induced tear secretion. Based on these results, PACAP might be clinically useful to treat dry eye disorder.


Assuntos
Síndromes do Olho Seco/tratamento farmacológico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Administração Oftálmica , Animais , Síndromes do Olho Seco/genética , Feminino , Camundongos , Camundongos Knockout , Soluções Oftálmicas , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem
13.
J Mol Neurosci ; 59(2): 270-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26910758

RESUMO

In the subgranular zone (SGZ) of the hippocampus, neurogenesis persists throughout life and is upregulated following ischemia. Accumulating evidence suggests that enhanced neurogenesis stimulated by ischemic injury contributes to recovery after stroke. However, the mechanisms underlying the upregulation of neurogenesis are unclear. We have demonstrated that a neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP), exerts a wide range of effects on neural stem cells (NSCs) during neural development. Here, we examined the effects of endogenous and exogenous PACAP in adult NSCs of the SGZ. Immunostaining showed expression of the PACAP receptor PAC1R in nestin-positive NSCs of adult naive mice. PACAP injection into the lateral ventricle increased bromodeoxyuridine (BrdU)-positive proliferative cells in the SGZ. These data suggest that PACAP promoted the proliferation of NSCs. In global ischemia model mice, the number of BrdU-positive cells was increased in wild-type mice but not in PACAP heterozygous knockout mice. The BrdU-positive cells that increased in number after ischemia were immunopositive for SOX2, a marker of NSCs, and differentiated into NeuN-positive mature neurons at 4 weeks after ischemia. These findings suggest that PACAP contributes to the proliferation of NSCs and may be associated with recovery after brain injury.


Assuntos
Hipocampo/metabolismo , Neurogênese , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Células Cultivadas , Heterozigoto , Hipocampo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Nestina/genética , Nestina/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Acidente Vascular Cerebral/patologia
14.
Genom Data ; 3: 148-54, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26484166

RESUMO

Toward twin goals of identifying molecular factors in brain injured by ischemic stroke, and the effects of neuropeptide pituitary adenylate-cyclase activating polypeptide (PACAP) on the ischemic brain, we have established the permanent middle cerebral artery occlusion (PMCAO) mouse model and utilized the Agilent mouse whole genome 4 × 44 K DNA chip. PACAP38 (1 pmol) injection was given intracerebroventrically in comparison to a control saline (0.9% NaCl) injection, to screen genes responsive to PACAP38. Two sets of tissues were prepared, whole hemispheres (ischemic and non-ischemic) and infract core and penumbra regions at 6 and 24 h. In this study, we have detailed the experimental design and protocol used therein and explained the quality controls for the use of total RNA in the downstream DNA microarray experiment utilizing a two-color dye-swap approach for stringent and confident gene identification published in a series of papers by Hori and coworkers (Hori et al., 2012-2015).

15.
Peptides ; 72: 202-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26275482

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues, with PACAP known to exert pleiotropic effects on the nervous system. This review provides an overview of current knowledge regarding the neuroprotective effects, mechanisms of action, and therapeutic potential of PACAP in response to ischemic brain injuries.


Assuntos
Isquemia Encefálica , Neurônios/metabolismo , Fármacos Neuroprotetores , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Humanos , Neurônios/patologia , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
16.
Gen Comp Endocrinol ; 216: 54-63, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25907658

RESUMO

Urotensin II (UII) exhibits diverse physiological actions including vasoconstriction, locomotor activity, osmoregulation, and immune response via the UII receptor (UTR) in mammals. However, in amphibians the function of the UII-UTR system remains unknown. In the present study, we investigated the potential immune function of UII using leukocytes isolated from the African clawed frog, Xenopus laevis. Stimulation of male frogs with lipopolysaccharide increased mRNA expression of UII and UTR in leukocytes, suggesting that inflammatory stimuli induce activation of the UII-UTR system. Migration assays showed that both UII and UII-related peptide enhanced migration of leukocytes in a dose-dependent manner, and that UII effect was inhibited by the UTR antagonist urantide. Inhibition of Rho kinase with Y-27632 abolished UII-induced migration, suggesting that it depends on the activation of RhoA/Rho kinase. Treatment of isolated leukocytes with UII increased the expression of several cytokine genes including tumor necrosis factor-α, interleukin-1ß, and macrophage migration inhibitory factor, and the effects were abolished by urantide. These results suggest that in amphibian leukocytes the UII-UTR system is involved in the activation of leukocyte migration and cytokine gene expression in response to inflammatory stimuli.


Assuntos
Movimento Celular/genética , Regulação da Expressão Gênica , Interleucina-1beta/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Urotensinas/metabolismo , Xenopus laevis/metabolismo , Animais , Células Cultivadas , Interleucina-1beta/genética , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Lipopolissacarídeos/farmacologia , Fatores Inibidores da Migração de Macrófagos/genética , Masculino , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional , Fator de Necrose Tumoral alfa/genética , Urotensinas/genética , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento
17.
J Neuroinflammation ; 12: 35, 2015 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-25889720

RESUMO

BACKGROUND: Adult human mesenchymal stem/stromal cells (hMSCs) from bone marrow have been reported to exhibit beneficial effects on spinal cord injury (SCI). A neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP) is known to decrease neuronal cell death and inflammatory response after ischemia, SCI, and other neuronal disorders. Recently, we found that expression of the gene for mouse PACAP (Adcyap1) was greater in animals receiving hMSCs with neural injury such as ischemia. However, the association of PACAP with hMSCs to protect nerve cells against neural injuries is still unclear. METHODS: Wild-type and PACAP-gene-deficient (Adcyap1 (+/-) ) mice were subjected to spinal cord transection, and hMSCs (5 × 10(5) cells) were injected into the intervertebral spinal cord on day 1 post-operation (p.o.). Locomotor activity, injury volume, retention of hMSCs, mouse and human cytokine genes (which contribute to macrophage (MΦ) and microglial activation), and Adcyap1 were evaluated. RESULTS: hMSCs injected into wild-type mice improved locomotor activity and injury volume compared with vehicle-treated mice. In contrast, non-viable hMSCs injected into wild-type mice, and viable hMSCs injected into Adcyap1 (+/-) mice, did not. Wild-type mice injected with hMSCs exhibited increased Adcyap1 expression, and observed PACAP immunoreaction in neuron-like cells. Gene expression levels for IL-1, tumor necrosis factor α (TNFα), interleukin-10 (IL-10), and transforming growth factor ß (TGFß) decreased, while that for interleukin-4 (IL-4) increased, in hMSC-injected wild-type mice. In contrast, IL-1, TGFß, and IL-4 gene expression levels were all abolished in hMSC-injected Adcyap1 (+/-) mice on day 7 post-operation. Moreover, the mice-implanted hMSCs increased an alternative activating macrophage/microglial marker, arginase activity. The human gene profile indicated that hMSCs upregulated the gene of IL-4 and growth factors which were reported to enhance Adcyap1 expression. Finally, we demonstrated that hMSCs express human ADCYAP1 and its receptor gene after the inflammation-related interferon-γ (IFNγ) in vitro. CONCLUSIONS: These results suggest that hMSCs attenuate the deleterious effects of SCI by reducing associated inflammatory responses and enhancing IL-4 production. This effect could be mediated in part by cell-cell cross-talk involving the neuropeptide PACAP.


Assuntos
Inflamação/terapia , Células-Tronco Mesenquimais/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Traumatismos da Medula Espinal/terapia , Animais , Linhagem Celular Transformada , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Terapia Baseada em Transplante de Células e Tecidos , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Inflamação/etiologia , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Locomoção/fisiologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Traumatismos da Medula Espinal/complicações , Fatores de Tempo
18.
Microarrays (Basel) ; 4(1): 2-24, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-27600210

RESUMO

Our group has been systematically investigating the effects of the neuropeptide pituitary adenylate-cyclase activating polypeptide (PACAP) on the ischemic brain. To do so, we have established and utilized the permanent middle cerebral artery occlusion (PMCAO) mouse model, in which PACAP38 (1 pmol) injection is given intracerebroventrically and compared to a control saline (0.9% sodium chloride, NaCl) injection, to unravel genome­wide gene expression changes using a high-throughput DNA microarray analysis approach. In our previous studies, we have accumulated a large volume of data (gene inventory) from the whole brain (ipsilateral and contralateral hemispheres) after both PMCAO and post-PACAP38 injection. In our latest research, we have targeted specifically infarct or ischemic core (hereafter abbreviated IC) and penumbra (hereafter abbreviated P) post-PACAP38 injections in order to re-examine the transcriptome at 6 and 24 h post injection. The current study aims to delineate the specificity of expression and localization of differentially expressed molecular factors influenced by PACAP38 in the IC and P regions. Utilizing the mouse 4 × 44 K whole genome DNA chip we show numerous changes (≧/≦ 1.5/0.75-fold) at both 6 h (654 and 456, and 522 and 449 up- and down-regulated genes for IC and P, respectively) and 24 h (2568 and 2684, and 1947 and 1592 up- and down-regulated genes for IC and P, respectively) after PACAP38 treatment. Among the gene inventories obtained here, two genes, brain-derived neurotrophic factor (Bdnf) and transthyretin (Ttr) were found to be induced by PACAP38 treatment, which we had not been able to identify previously using the whole hemisphere transcriptome analysis. Using bioinformatics analysis by pathway- or specific-disease-state focused gene classifications and Ingenuity Pathway Analysis (IPA) the differentially expressed genes are functionally classified and discussed. Among these, we specifically discuss some novel and previously identified genes, such as alpha hemoglobin stabilizing protein (Ahsp), cathelicidin antimicrobial peptide (Camp), chemokines, interferon beta 1 (Ifnb1), and interleukin 6 (Il6) in context of PACAP38-mediated neuroprotection in the ischemic brain. Taken together, the DNA microarray analysis provides not only a great resource for further study, but also reinforces the importance of region-specific analyses in genome-wide identification of target molecular factors that might play a role in the neuroprotective function of PACAP38.

19.
Arterioscler Thromb Vasc Biol ; 34(11): 2413-20, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25189573

RESUMO

OBJECTIVE: Although nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) is reportedly essential for phagocyte host defenses, it has been found to aggravate atherosclerosis in apolipoprotein E (Apoe)-null mice through excess production of superoxide. We therefore assessed the role of NOX2 in an experimental model of abdominal aortic aneurysm (AAA) and assessed the mechanism of NOX2 action in AAA. APPROACH AND RESULTS: AAA was induced in low-density lipoprotein receptor-null (Ldlr(-/-)) mice by infusing angiotensin II. Nox2 expression was elevated in the abdominal aortae of these mice during infusion of angiotensin II, with enhanced Nox2 expression mainly because of the recruitment of NOX2-enriched macrophages into AAA lesions. Unexpectedly, systemic Nox2 deficiency promoted AAA development but reduced the level of reactive oxygen species in AAA lesions. Nox2 deficiency stimulated macrophage conversion toward the M1 subset, enhancing expression of interleukin (IL)-1ß and matrix metalloproteinase-9/12 mRNA. Administration of neutralizing antibody against IL-1ß abolished AAA development in Nox2-deficient mice. Bone marrow transplantation experiments revealed that AAA aggravation by Nox2 deficiency is because of bone marrow-derived cells. Isolated bone marrow-derived macrophages from Nox2-null mice could not generate reactive oxygen species. In contrast, IL-1ß expression in peritoneal and bone marrow-derived macrophages, but not in peritoneal neutrophils, was substantially enhanced by Nox2 deficiency. Pharmacological inhibition of Janus kinase/signal transducers and activators of transcription signaling inhibited excess IL-1ß expression in Nox2-deficient macrophages, whereas matrix metalloproteinase-9 secretion was constitutively stimulated via nuclear factor-κB signals. CONCLUSIONS: Nox2 deficiency enhances macrophage secretion of IL-1ß and matrix metalloproteinase-9, disrupting tissue-remodeling functions in AAA lesions. These actions are unfavorable if NOX2 is to serve as a molecular target for AAA.


Assuntos
Angiotensina II/efeitos adversos , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/metabolismo , Glicoproteínas de Membrana/deficiência , NADPH Oxidases/deficiência , Animais , Anticorpos/farmacologia , Aneurisma da Aorta Abdominal/patologia , Modelos Animais de Doenças , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/efeitos dos fármacos , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
Int J Mol Sci ; 15(9): 17014-34, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25257527

RESUMO

Pituitary adenylate-cyclase activating polypeptide (PACAP) has neuroprotective and axonal guidance functions, but the mechanisms behind such actions remain unclear. Previously we examined effects of PACAP (PACAP38, 1 pmol) injection intracerebroventrically in a mouse model of permanent middle cerebral artery occlusion (PMCAO) along with control saline (0.9% NaCl) injection. Transcriptomic and proteomic approaches using ischemic (ipsilateral) brain hemisphere revealed differentially regulated genes and proteins by PACAP38 at 6 and 24 h post-treatment. However, as the ischemic hemisphere consisted of infarct core, penumbra, and non-ischemic regions, specificity of expression and localization of these identified molecular factors remained incomplete. This led us to devise a new experimental strategy wherein, ischemic core and penumbra were carefully sampled and compared to the corresponding contralateral (healthy) core and penumbra regions at 6 and 24 h post PACAP38 or saline injections. Both reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to examine targeted gene expressions and the collapsin response mediator protein 2 (CRMP2) protein profiles, respectively. Clear differences in expression of genes and CRMP2 protein abundance and degradation product/short isoform was observed between ischemic core and penumbra and also compared to the contralateral healthy tissues after PACAP38 or saline treatment. Results indicate the importance of region-specific analyses to further identify, localize and functionally analyse target molecular factors for clarifying the neuroprotective function of PACAP38.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Fármacos Neuroprotetores/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , DNA Complementar/genética , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Proteínas do Tecido Nervoso/genética , Fármacos Neuroprotetores/administração & dosagem , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA