Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 13(6): e0273322, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36286551

RESUMO

Capsular polysaccharides are common virulence factors of extracellular, but not intracellular bacterial pathogens, due to the antiphagocytic properties of these surface structures. It is therefore paradoxical that Salmonella enterica subspecies enterica serovar Typhi, an intracellular pathogen, synthesizes a virulence-associated (Vi) capsule, which exhibits antiphagocytic properties. Here, we show that the Vi capsular polysaccharide has different functions when S. Typhi interacts with distinct subsets of host phagocytes. The Vi capsular polysaccharide allowed S. Typhi to selectively evade phagocytosis by human neutrophils while promoting human macrophage phagocytosis. A screen of C-type lectin receptors identified human DC-SIGN as the receptor involved in macrophage binding and phagocytosis of capsulated S. Typhi. Consistent with the anti-inflammatory activity of DC-SIGN, purified Vi capsular polysaccharide reduced inflammatory responses in macrophages. These data suggest that binding of the human C-type lectin receptor DC-SIGN by the Vi capsular polysaccharide contributes to the pathogenesis of typhoid fever. IMPORTANCE Salmonella enterica subspecies enterica serovar Typhi is the causative agent of typhoid fever. The recent emergence of S. Typhi strains which are resistant to antibiotic therapy highlights the importance of vaccination in managing typhoid fever. The virulence-associated (Vi) capsular polysaccharide is an effective vaccine against typhoid fever, but the role the capsule plays during pathogenesis remains incompletely understood. Here, we identify the human C-type lectin receptor DC-SIGN as the receptor for the Vi capsular polysaccharide. Binding of capsulated S. Typhi to DC-SIGN resulted in phagocytosis of the pathogen by macrophages and induction of an anti-inflammatory cytokine response. Thus, the interaction of the Vi capsular polysaccharide with human DC-SIGN contributes to the pathogenesis of typhoid fever and should be further investigated in the context of vaccine development.


Assuntos
Salmonella typhi , Febre Tifoide , Humanos , Febre Tifoide/microbiologia , Polissacarídeos Bacterianos/metabolismo , Lectinas Tipo C/metabolismo , Fagocitose , Macrófagos/metabolismo
2.
J Virol Methods ; 238: 42-47, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27751948

RESUMO

Bovine papular stomatitis virus (BPSV) causes pustular cutaneous disease in cattle worldwide. This paper describes the development of a specific loop-mediated isothermal amplification (LAMP) assay to detect BPSV which did not cross-react with other parapoxviruses. To assess analytical sensitivity of this LAMP assay, DNA was extracted from serially diluted BPSV from which the infectious titer was determined by a novel assay based on calf kidney epithelial cells. The LAMP assay had equivalent analytical sensitivity to quantitative PCR, and could detect as few as 86 copies of viral DNA per reaction. These results suggest that the assay is a specific and sensitive technique to rapidly diagnose bovine papular stomatitis in domestic animals.


Assuntos
Doenças dos Bovinos/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Parapoxvirus/genética , Animais , Bovinos , Doenças dos Bovinos/virologia , Primers do DNA/genética , DNA Viral/análise , Células Epiteliais/virologia , Limite de Detecção , Parapoxvirus/isolamento & purificação , Infecções por Poxviridae/diagnóstico , Infecções por Poxviridae/virologia , RNA Viral , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA