Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunity ; 57(9): 2043-2060.e10, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39111316

RESUMO

The master transcription factor of regulatory T (Treg) cells, forkhead box protein P3 (Foxp3), controls Treg cell function by targeting certain genes for activation or repression, but the specific mechanisms by which it mediates this activation or repression under different conditions remain unclear. We found that Ikzf1 associates with Foxp3 via its exon 5 (IkE5) and that IkE5-deficient Treg cells highly expressed genes that would otherwise be repressed by Foxp3 upon T cell receptor stimulation, including Ifng. Treg-specific IkE5-deletion caused interferon-γ (IFN-γ) overproduction, which destabilized Foxp3 expression and impaired Treg suppressive function, leading to systemic autoimmune disease and strong anti-tumor immunity. Pomalidomide, which degrades IKZF1 and IKZF3, induced IFN-γ overproduction in human Treg cells. Mechanistically, the Foxp3-Ikzf1-Ikzf3 complex competed with epigenetic co-activators, such as p300, for binding to target gene loci via chromatin remodeling. Therefore, the Ikzf1 association with Foxp3 is essential for the gene-repressive function of Foxp3 and could be exploited to treat autoimmune disease and cancer.


Assuntos
Autoimunidade , Fatores de Transcrição Forkhead , Fator de Transcrição Ikaros , Interferon gama , Linfócitos T Reguladores , Fator de Transcrição Ikaros/metabolismo , Fator de Transcrição Ikaros/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Humanos , Animais , Autoimunidade/genética , Autoimunidade/imunologia , Camundongos , Interferon gama/metabolismo , Regulação da Expressão Gênica , Camundongos Knockout , Neoplasias/imunologia , Neoplasias/genética , Camundongos Endogâmicos C57BL , Proteína p300 Associada a E1A/metabolismo
2.
NAR Cancer ; 6(2): zcae022, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38751935

RESUMO

DNA methylation is a pivotal epigenetic modification that defines cellular identity. While cell deconvolution utilizing this information is considered useful for clinical practice, current methods for deconvolution are limited in their accuracy and resolution. In this study, we collected DNA methylation data from 945 human samples derived from various tissues and tumor-infiltrating immune cells and trained a neural network model with them. The model, termed MEnet, predicted abundance of cell population together with the detailed immune cell status from bulk DNA methylation data, and showed consistency to those of flow cytometry and histochemistry. MEnet was superior to the existing methods in the accuracy, speed, and detectable cell diversity, and could be applicable for peripheral blood, tumors, cell-free DNA, and formalin-fixed paraffin-embedded sections. Furthermore, by applying MEnet to 72 intrahepatic cholangiocarcinoma samples, we identified immune cell profiles associated with cancer prognosis. We believe that cell deconvolution by MEnet has the potential for use in clinical settings.

3.
Nat Commun ; 13(1): 4230, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869073

RESUMO

Myasthenia gravis (MG) is a neurological disease caused by autoantibodies against neuromuscular-associated proteins. While MG frequently develops in thymoma patients, the etiologic factors for MG are not well understood. Here, by constructing a comprehensive atlas of thymoma using bulk and single-cell RNA-sequencing, we identify ectopic expression of neuromuscular molecules in MG-type thymoma. These molecules are found within a distinct subpopulation of medullary thymic epithelial cells (mTECs), which we name neuromuscular mTECs (nmTECs). MG-thymoma also exhibits microenvironments dedicated to autoantibody production, including ectopic germinal center formation, T follicular helper cell accumulation, and type 2 conventional dendritic cell migration. Cell-cell interaction analysis also predicts the interaction between nmTECs and T/B cells via CXCL12-CXCR4. The enrichment of nmTECs presenting neuromuscular molecules within MG-thymoma is further confirmed immunohistochemically and by cellular composition estimation from the MG-thymoma transcriptome. Altogether, this study suggests that nmTECs have a significant function in MG pathogenesis via ectopic expression of neuromuscular molecules.


Assuntos
Miastenia Gravis , Timoma , Neoplasias do Timo , Células Epiteliais/patologia , Expressão Gênica , Humanos , Miastenia Gravis/genética , Timoma/genética , Neoplasias do Timo/genética , Microambiente Tumoral
4.
Sci Rep ; 12(1): 5377, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354899

RESUMO

Regulatory T cells (Tregs) suppress the host immune response and maintain immune homeostasis. Tregs also promote cancer progression and are involved in resistance to immune checkpoint inhibitor treatments. Recent studies identified selective CCR8 expression on tumor-infiltrating Tregs; CCR8+ Tregs have been indicated as a possible new target of cancer immunotherapy. Here, we investigated the features of CCR8+ Tregs in lung cancer patients. CCR8+ Tregs were highly activated and infiltration of CCR8+ Tregs in tumors was associated with poor prognosis in lung cancer patients. We also investigated their immune suppressive function, especially the influence on cytotoxic T lymphocyte cell function. The Cancer Genome Atlas analysis revealed that CD8 T cell activities were suppressed in high CCR8-expressing tumors. Additionally, depletion of CCR8+ cells enhanced CD8 T cell function in an ex vivo culture of lung tumor-infiltrating cells. Moreover, CCR8+ Tregs, but not CCR8- Tregs, induced from human PBMCs markedly suppressed CD8 T cell cytotoxicity. Finally, we demonstrated the therapeutic effect of targeting CCR8 in a murine model of lung cancer. These findings reveal the significance of CCR8+ Tregs for immunosuppression in lung cancer, especially via cytotoxic T lymphocyte cell suppression, and suggest the potential value of CCR8-targeted therapy for cancer treatment.


Assuntos
Neoplasias Pulmonares , Linfócitos T Reguladores , Animais , Humanos , Tolerância Imunológica , Imunoterapia , Neoplasias Pulmonares/patologia , Camundongos , Receptores CCR8/metabolismo , Linfócitos T Citotóxicos
5.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35140181

RESUMO

Foxp3-expressing CD25+CD4+ regulatory T cells (Tregs) are abundant in tumor tissues. Here, hypothesizing that tumor Tregs would clonally expand after they are activated by tumor-associated antigens to suppress antitumor immune responses, we performed single-cell analysis on tumor Tregs to characterize them by T cell receptor clonotype and gene-expression profiles. We found that multiclonal Tregs present in tumor tissues predominantly expressed the chemokine receptor CCR8. In mice and humans, CCR8+ Tregs constituted 30 to 80% of tumor Tregs in various cancers and less than 10% of Tregs in other tissues, whereas most tumor-infiltrating conventional T cells (Tconvs) were CCR8- CCR8+ tumor Tregs were highly differentiated and functionally stable. Administration of cell-depleting anti-CCR8 monoclonal antibodies (mAbs) indeed selectively eliminated multiclonal tumor Tregs, leading to cure of established tumors in mice. The treatment resulted in the expansion of CD8+ effector Tconvs, including tumor antigen-specific ones, that were more activated and less exhausted than those induced by PD-1 immune checkpoint blockade. Anti-CCR8 mAb treatment also evoked strong secondary immune responses against the same tumor cell line inoculated several months after tumor eradication, indicating that elimination of tumor-reactive multiclonal Tregs was sufficient to induce memory-type tumor-specific effector Tconvs. Despite induction of such potent tumor immunity, anti-CCR8 mAb treatment elicited minimal autoimmunity in mice, contrasting with systemic Treg depletion, which eradicated tumors but induced severe autoimmune disease. Thus, specific removal of clonally expanding Tregs in tumor tissues for a limited period by cell-depleting anti-CCR8 mAb treatment can generate potent tumor immunity with long-lasting memory and without deleterious autoimmunity.


Assuntos
Memória Imunológica , Neoplasias/metabolismo , Receptores CCR8/metabolismo , Animais , Anticorpos Monoclonais , Biomarcadores Tumorais , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Receptores CCR8/genética , Linfócitos T Reguladores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA