Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125651

RESUMO

Myocardial damage significantly impacts the prognosis of patients with cancer; however, the mechanisms of myocardial damage induced by cancer and its treatment remain unknown. We previously reported that medium-chain fatty acids (MCFAs) improve cancer-induced myocardial damage but did not evaluate the differences in effect according to MCFA type. Therefore, this study investigated the role of inflammatory cytokines in cancer-induced myocardial damage and the effects of three types of MCFAs (caprylic acid [C8], capric acid [C10], and lauric acid [C12]). In a mouse model, the C8 diet showed a greater effect on improving myocardial damage compared with C10 and C12 diets. Myocardial tubes differentiated from H9C2 cardiomyoblasts demonstrated increased mitochondrial oxidative stress, decreased membrane potential and mitochondrial volume, and inhibited myocardial tube differentiation following treatment with high-mobility group box-1 (HMGB1) but not interleukin-6 and tumor necrosis factor-α cytokines. However, HMGB1 treatment combined with C8 improved HMGB1-induced mitochondrial damage, enhanced autophagy, and increased mitochondrial biogenesis and maturation. However, these effects were only partial when combined with beta-hydroxybutyrate, a C8 metabolite. Thus, HMGB1 may play an important role in cancer-related myocardial damage. C8 counteracts HMGB1's effects and improves cancer-related myocardial damage. Further clinical studies are required to investigate the effects of C8.


Assuntos
Caprilatos , Proteína HMGB1 , Animais , Proteína HMGB1/metabolismo , Camundongos , Caprilatos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Masculino , Ácidos Láuricos/farmacologia , Linhagem Celular , Citocinas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ácidos Decanoicos/farmacologia , Ácido 3-Hidroxibutírico/farmacologia , Autofagia/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL
2.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999957

RESUMO

Abnormalities in mucosal immunity are involved in the onset and progression of ulcerative colitis (UC), resulting in a high incidence of colorectal cancer (CRC). While high-mobility group box-1 (HMGB1) is overexpressed during colorectal carcinogenesis, its role in UC-related carcinogenesis remains unclear. In the present study, we investigated the role of HMGB1 in UC-related carcinogenesis and sporadic CRC. Both the azoxymethane colon carcinogenesis and dextran sulfate sodium colitis carcinogenesis models demonstrated temporal increases in mucosal HMGB1 levels. Activated CD8+ cells initially increased and then decreased, whereas exhausted CD8+ cells increased. Additionally, we observed increased regulatory CD8+ cells, decreased naïve CD8+ cells, and decreased mucosal epithelial differentiation. In the in vitro study, HMGB1 induced energy reprogramming from oxidative phosphorylation to glycolysis in CD8+ cells and intestinal epithelial cells. Furthermore, in UC dysplasia, UC-related CRC, and hyperplastic mucosa surrounding human sporadic CRC, we found increased mucosal HMGB1, decreased activated CD8+ cells, and suppressed mucosal epithelial differentiation. However, we observed increased activated CD8+ cells in active UC mucosa. These findings indicate that HMGB1 plays an important role in modulating mucosal immunity and epithelial dedifferentiation in both UC-related carcinogenesis and sporadic CRC.


Assuntos
Linfócitos T CD8-Positivos , Diferenciação Celular , Colite Ulcerativa , Proteína HMGB1 , Imunidade nas Mucosas , Mucosa Intestinal , Proteína HMGB1/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Colite Ulcerativa/patologia , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/induzido quimicamente , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos , Masculino , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/imunologia , Camundongos Endogâmicos C57BL , Carcinogênese/imunologia , Carcinogênese/patologia , Carcinogênese/metabolismo
3.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000167

RESUMO

Skeletal muscle aging and sarcopenia result in similar changes in the levels of aging markers. However, few studies have examined cancer sarcopenia from the perspective of aging. Therefore, this study investigated aging in cancer sarcopenia and explored its causes in vitro and in vivo. In mouse aging, in vitro cachexia, and mouse cachexia models, skeletal muscles showed similar changes in aging markers including oxidative stress, fibrosis, reduced muscle differentiation potential, and telomere shortening. Furthermore, examination of mitochondrial DNA from skeletal muscle revealed a 5 kb deletion in the major arc; truncation of complexes I, IV, and V in the electron transport chain; and reduced oxidative phosphorylation (OXPHOS). The mouse cachexia model demonstrated high levels of high-mobility group box-1 (HMGB1) and tumor necrosis factor-α (TNFα) in cancer ascites. Continuous administration of neutralizing antibodies against HMGB1 and TNFα in this model reduced oxidative stress and abrogated mitochondrial DNA deletion. These results suggest that in cancer sarcopenia, mitochondrial oxidative stress caused by inflammatory cytokines leads to mitochondrial DNA damage, which in turn leads to decreased OXPHOS and the promotion of aging.


Assuntos
Envelhecimento , Dano ao DNA , DNA Mitocondrial , Proteína HMGB1 , Músculo Esquelético , Estresse Oxidativo , Sarcopenia , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Envelhecimento/metabolismo , Envelhecimento/genética , Sarcopenia/metabolismo , Sarcopenia/patologia , Sarcopenia/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Caquexia/metabolismo , Caquexia/patologia , Caquexia/genética , Caquexia/etiologia , Fosforilação Oxidativa , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Masculino , Camundongos Endogâmicos C57BL
4.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474261

RESUMO

Patients with cancer die from cardiac dysfunction second only to the disease itself. Cardiotoxicity caused by anticancer drugs has been emphasized as a possible cause; however, the details remain unclear. To investigate this mechanism, we treated rat cardiomyoblast H9c2 cells with sunitinib, lapatinib, 5-fluorouracil, and cisplatin to examine their effects. All anticancer drugs increased ROS, lipid peroxide, and iron (II) levels in the mitochondria and decreased glutathione peroxidase-4 levels and the GSH/GSSG ratio. Against this background, mitochondrial iron (II) accumulates through the unregulated expression of haem oxygenase-1 and ferrochelatase. Anticancer-drug-induced cell death was suppressed by N-acetylcysteine, deferoxamine, and ferrostatin, indicating ferroptosis. Anticancer drug treatment impairs mitochondrial DNA and inhibits oxidative phosphorylation in H9c2 cells. Similar results were observed in the hearts of cancer-free rats treated with anticancer drugs in vitro. In contrast, treatment with pterostilbene inhibited the induction of ferroptosis and rescued the energy restriction induced by anticancer drugs both in vitro and in vivo. These findings suggest that induction of ferroptosis and inhibition of oxidative phosphorylation are mechanisms by which anticancer drugs cause myocardial damage. As pterostilbene ameliorates these mechanisms, it is expected to have significant clinical applications.


Assuntos
Antineoplásicos , Ferroptose , Humanos , Ratos , Animais , Fosforilação Oxidativa , Antineoplásicos/farmacologia , Morte Celular , Ferro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA