Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(10): eadl1122, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446892

RESUMO

Coxsackievirus B (CVB) infection of pancreatic ß cells is associated with ß cell autoimmunity and type 1 diabetes. We investigated how CVB affects human ß cells and anti-CVB T cell responses. ß cells were efficiently infected by CVB in vitro, down-regulated human leukocyte antigen (HLA) class I, and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized a fraction of these peptides; only another subfraction was targeted by effector/memory T cells that expressed exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with ß cell antigen GAD. Infected ß cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Our in vitro and ex vivo data highlight limited CD8+ T cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and nonstructural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.


Assuntos
Infecções por Coxsackievirus , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Linfócitos T CD8-Positivos , Anticorpos , Epitopos , Peptídeos , Antivirais
2.
Sci Adv ; 9(49): eadj6975, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064552

RESUMO

T cells targeting self-proteins are important mediators in autoimmune diseases. T cells express unique cell-surface receptors (TCRs) that recognize peptides presented by major histocompatibility molecules. TCRs have been identified from blood and pancreatic islets of individuals with type 1 diabetes (T1D). Here, we tracked ~1700 known antigen-specific TCR sequences, islet antigen or viral reactive, in bulk TCRß sequencing from longitudinal blood DNA samples in at-risk cases who progressed to T1D, age/sex/human leukocyte antigen-matched controls, and a new-onset T1D cohort. Shared and frequent antigen-specific TCRß sequences were identified in all three cohorts, and viral sequences were present across all ages. Islet sequences had different patterns of accumulation based upon antigen specificity in the at-risk cases. Furthermore, 73 islet-antigen TCRß sequences were present in higher frequencies and numbers in T1D samples relative to controls. The total number of these disease-associated TCRß sequences inversely correlated with age at clinical diagnosis, indicating the potential to use disease-relevant TCR sequences as biomarkers in autoimmune disorders.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Peptídeos
3.
Front Immunol ; 14: 1276255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908349

RESUMO

Gold nanoparticles (GNPs) have been used in the development of novel therapies as a way of delivery of both stimulatory and tolerogenic peptide cargoes. Here we report that intradermal injection of GNPs loaded with the proinsulin peptide C19-A3, in patients with type 1 diabetes, results in recruitment and retention of immune cells in the skin. These include large numbers of clonally expanded T-cells sharing the same paired T-cell receptors (TCRs) with activated phenotypes, half of which, when the TCRs were re-expressed in a cell-based system, were confirmed to be specific for either GNP or proinsulin. All the identified gold-specific clones were CD8+, whilst proinsulin-specific clones were both CD8+ and CD4+. Proinsulin-specific CD8+ clones had a distinctive cytotoxic phenotype with overexpression of granulysin (GNLY) and KIR receptors. Clonally expanded antigen-specific T cells remained in situ for months to years, with a spectrum of tissue resident memory and effector memory phenotypes. As the T-cell response is divided between targeting the gold core and the antigenic cargo, this offers a route to improving resident memory T-cells formation in response to vaccines. In addition, our scRNAseq data indicate that focusing on clonally expanded skin infiltrating T-cells recruited to intradermally injected antigen is a highly efficient method to enrich and identify antigen-specific cells. This approach has the potential to be used to monitor the intradermal delivery of antigens and nanoparticles for immune modulation in humans.


Assuntos
Diabetes Mellitus Tipo 1 , Nanopartículas Metálicas , Humanos , Autoantígenos , Proinsulina/genética , Ouro , Injeções Intradérmicas , Análise da Expressão Gênica de Célula Única , Peptídeos/genética , Receptores de Antígenos de Linfócitos T/genética
4.
Front Immunol ; 13: 926650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032090

RESUMO

Insulin is considered to be a key antigenic target of T cells in Type 1 Diabetes (T1D) and autoimmune diabetes in the NOD mouse with particular focus on the B-chain amino acid sequence B:9-23 as the primary epitope. Our lab previously discovered that hybrid insulin peptides (HIPs), comprised of insulin C-peptide fragments fused to other ß-cell granule peptides, are ligands for several pathogenic CD4 T cell clones derived from NOD mice and for autoreactive CD4 T cells from T1D patients. A subset of CD4 T cell clones from our panel react to insulin and B:9-23 but only at high concentrations of antigen. We hypothesized that HIPs might also be formed from insulin B-chain sequences covalently bound to other endogenously cleaved ß-cell proteins. We report here on the identification of a B-chain HIP, termed the 6.3HIP, containing a fragment of B:9-23 joined to an endogenously processed peptide of ProSAAS, as a strong neo-epitope for the insulin-reactive CD4 T cell clone BDC-6.3. Using an I-Ag7 tetramer loaded with the 6.3HIP, we demonstrate that T cells reactive to this B-chain HIP can be readily detected in NOD mouse islet infiltrates. This work suggests that some portion of autoreactive T cells stimulated by insulin B:9-23 may be responding to B-chain HIPs as peptide ligands.


Assuntos
Diabetes Mellitus Tipo 1 , Animais , Linfócitos T CD4-Positivos , Epitopos , Camundongos , Camundongos Endogâmicos NOD , Fragmentos de Peptídeos , Peptídeos
5.
Front Immunol ; 12: 777788, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868047

RESUMO

T cell receptors (TCRs) are unique markers that define antigen specificity for a given T cell. With the evolution of sequencing and computational analysis technologies, TCRs are now prime candidates for the development of next-generation non-cell based T cell biomarkers, which provide a surrogate measure to assess the presence of antigen-specific T cells. Type 1 diabetes (T1D), the immune-mediated form of diabetes, is a prototypical organ specific autoimmune disease in which T cells play a pivotal role in targeting pancreatic insulin-producing beta cells. While the disease is now predictable by measuring autoantibodies in the peripheral blood directed to beta cell proteins, there is an urgent need to develop T cell markers that recapitulate T cell activity in the pancreas and can be a measure of disease activity. This review focuses on the potential and challenges of developing TCR biomarkers for T1D. We summarize current knowledge about TCR repertoires and clonotypes specific for T1D and discuss challenges that are unique for autoimmune diabetes. Ultimately, the integration of large TCR datasets produced from individuals with and without T1D along with computational 'big data' analysis will facilitate the development of TCRs as potentially powerful biomarkers in the development of T1D.


Assuntos
Biomarcadores , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/metabolismo , Suscetibilidade a Doenças , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Alelos , Animais , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/terapia , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Predisposição Genética para Doença , Variação Genética , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Humanos , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
6.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33542101

RESUMO

T-cell responses to posttranslationally modified self-antigens are associated with many autoimmune disorders. In type 1 diabetes, hybrid insulin peptides (HIPs) are implicated in the T-cell-mediated destruction of insulin-producing ß-cells within pancreatic islets. The natural history of the disease is such that it allows for the study of T-cell reactivity prior to the onset of clinical symptoms. We hypothesized that CD4 T-cell responses to posttranslationally modified islet peptides precedes diabetes onset. In a cohort of genetically at-risk individuals, we measured longitudinal T-cell responses to native insulin and hybrid insulin peptides. Both proinflammatory (interferon-γ) and antiinflammatory (interluekin-10) cytokine responses to HIPs were more robust than those to native peptides, and the ratio of such responses oscillated between pro- and antiinflammatory over time. However, individuals who developed islet autoantibodies or progressed to clinical type 1 diabetes had predominantly inflammatory T-cell responses to HIPs. Additionally, several HIP T-cell responses correlated to worsening measurements of blood glucose, highlighting the relevance of T-cell responses to posttranslationally modified peptides prior to autoimmune disease development.


Assuntos
Autoantígenos/genética , Diabetes Mellitus Tipo 1/genética , Insulina/imunologia , Interferon gama/genética , Peptídeos/genética , Adolescente , Adulto , Autoanticorpos/genética , Autoanticorpos/imunologia , Autoantígenos/imunologia , Autoimunidade/genética , Autoimunidade/imunologia , Linfócitos T CD4-Positivos/imunologia , Criança , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Progressão da Doença , Feminino , Humanos , Insulina/genética , Células Secretoras de Insulina/imunologia , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Masculino , Peptídeos/imunologia , Linfócitos T/imunologia , Adulto Jovem
7.
J Clin Invest ; 131(9)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33630763

RESUMO

Discovering dominant epitopes for T cells, particularly CD4+ T cells, in human immune-mediated diseases remains a significant challenge. Here, we used bronchoalveolar lavage (BAL) cells from HLA-DP2-expressing patients with chronic beryllium disease (CBD), a debilitating granulomatous lung disorder characterized by accumulations of beryllium-specific (Be-specific) CD4+ T cells in the lung. We discovered lung-resident CD4+ T cells that expressed a disease-specific public CDR3ß T cell receptor motif and were specific to Be-modified self-peptides derived from C-C motif ligand 4 (CCL4) and CCL3. HLA-DP2-CCL/Be tetramer staining confirmed that these chemokine-derived peptides represented major antigenic targets in CBD. Furthermore, Be induced CCL3 and CCL4 secretion in the lungs of mice and humans. In a murine model of CBD, the addition of LPS to Be oxide exposure enhanced CCL4 and CCL3 secretion in the lung and significantly increased the number and percentage of CD4+ T cells specific for the HLA-DP2-CCL/Be epitope. Thus, we demonstrate a direct link between Be-induced innate production of chemokines and the development of a robust adaptive immune response to those same chemokines presented as Be-modified self-peptides, creating a cycle of innate and adaptive immune activation.


Assuntos
Beriliose/imunologia , Berílio/toxicidade , Linfócitos T CD4-Positivos/imunologia , Quimiocina CCL3/imunologia , Quimiocina CCL4/imunologia , Pulmão/imunologia , Animais , Antígenos , Beriliose/genética , Beriliose/patologia , Linfócitos T CD4-Positivos/patologia , Quimiocina CCL3/genética , Quimiocina CCL4/genética , Doença Crônica , Feminino , Cadeias beta de HLA-DP/genética , Cadeias beta de HLA-DP/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Pulmão/patologia , Masculino , Camundongos
8.
J Transl Autoimmun ; 3: 100061, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32875283

RESUMO

During T cell development in mice, thymic negative selection deletes cells with the potential to recognize and react to self-antigens. In human T cell-dependent autoimmune diseases such as Type 1 diabetes, multiple sclerosis, and rheumatoid arthritis, T cells reactive to autoantigens are thought to escape negative selection, traffic to the periphery and attack self-tissues. However, physiological thymic negative selection of autoreactive human T cells has not been previously studied. We now describe a human T-cell receptor-transgenic humanized mouse model that permits the study of autoreactive T-cell development in a human thymus. Our studies demonstrate that thymocytes expressing the autoreactive Clone 5 TCR, which recognizes insulin B:9-23 presented by HLA-DQ8, are efficiently negatively selected at the double and single positive stage in human immune systems derived from HLA-DQ8+ HSCs. In the absence of hematopoietic expression of the HLA restriction element, negative selection of Clone 5 is less efficient and restricted to the single positive stage. To our knowledge, these data provide the first demonstration of negative selection of human T cells recognizing a naturally-expressed tissue-restricted antigen. Intrathymic antigen presenting cells are required to delete less mature thymocytes, while presentation by medullary thymic epithelial cells may be sufficient to delete more mature single positive cells. These observations set the stage for investigation of putative defects in negative selection in human autoimmune diseases.

9.
Front Immunol ; 11: 633, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328071

RESUMO

Recent advancements in single cell sequencing technologies allow for identification of numerous immune-receptors expressed by T cells such as tumor-specific and autoimmune T cells. Determining antigen specificity of those cells holds immense therapeutic promise. Therefore, the purpose of this study was to develop a method that can efficiently test antigen reactivity of multiple T cell receptors (TCRs) with limited cost, time, and labor. Nuclear factor of activated T cells (NFAT) is a transcription factor involved in producing cytokines and is often utilized as a reporter system for T cell activation. Using a NFAT-based fluorescent reporter system, we generated T-hybridoma cell lines that express intensely fluorescent proteins in response to antigen stimulation and constitutively express additional fluorescent proteins, which serve as identifiers of each T-hybridoma expressing a unique TCR. This allows for the combination of multiple T-hybridoma lines within a single reaction. Sensitivity to stimulation is not decreased by adding fluorescent proteins or multiplexing T cells. In multiplexed reactions, response by one cell line does not induce response in others, thus preserving specificity. This multiplex assay system will be a useful tool for antigen discovery research in a variety of contexts, including using combinatorial peptide libraries to determine T cell epitopes.


Assuntos
Complexo CD3/metabolismo , Linfócitos T CD4-Positivos/imunologia , Imunoensaio/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Retroviridae/genética , Animais , Epitopos de Linfócito T/imunologia , Genes Reporter , Vetores Genéticos , Hibridomas , Imunização , Ativação Linfocitária , Camundongos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais
10.
Semin Immunol ; 47: 101395, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32205022

RESUMO

T cells recognize and respond to self antigens in both cancer and autoimmunity. One strategy to influence this response is to incorporate amino acid substitutions into these T cell-specific epitopes. This strategy is being reconsidered now with the goal of increasing time to regression with checkpoint blockade therapies in cancer and antigen-specific immunotherapies in autoimmunity. We discuss how these amino acid substitutions change the interactions with the MHC class I or II molecule and the responding T cell repertoire. Amino acid substitutions in epitopes that are the most effective in therapies bind more strongly to T cell receptor and/or MHC molecules and cross-react with the same repertoire of T cells as the natural antigen.


Assuntos
Autoimunidade , Epitopos/imunologia , Imunomodulação , Neoplasias/etiologia , Peptídeos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Substituição de Aminoácidos , Animais , Reações Cruzadas , Suscetibilidade a Doenças/imunologia , Epitopos/genética , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Humanos , Mutação , Neoplasias/metabolismo , Neoplasias/patologia , Peptídeos/genética , Receptores de Antígenos de Linfócitos T/metabolismo
11.
Sci Immunol ; 4(38)2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31471352

RESUMO

The class II region of the major histocompatibility complex (MHC) locus is the main contributor to the genetic susceptibility to type 1 diabetes (T1D). The loss of an aspartic acid at position 57 of diabetogenic HLA-DQß chains supports this association; this single amino acid change influences how TCRs recognize peptides in the context of HLA-DQ8 and I-Ag7 using a mechanism termed the P9 switch. Here, we built register-specific insulin peptide MHC tetramers to examine CD4+ T cell responses to Ins12-20 and Ins13-21 peptides during the early prediabetic phase of disease in nonobese diabetic (NOD) mice. A single-cell analysis of anti-insulin CD4+ T cells performed in 6- and 12-week-old NOD mice revealed tissue-specific gene expression signatures. TCR signaling and clonal expansion were found only in the islets of Langerhans and produced either classical TH1 differentiation or an unusual Treg phenotype, independent of TCR usage. The early phase of the anti-insulin response was dominated by T cells specific for Ins12-20, the register that supports a P9 switch mode of recognition. The presence of the P9 switch was demonstrated by TCR sequencing, reexpression, mutagenesis, and functional testing of TCRαß pairs in vitro. Genetic correction of the I-Aß57 mutation in NOD mice resulted in the disappearance of D/E residues in the CDR3ß of anti-Ins12-20 T cells. These results provide a mechanistic molecular explanation that links the characteristic MHC class II polymorphism of T1D with the recognition of islet autoantigens and disease onset.


Assuntos
Alelos , Diabetes Mellitus Tipo 1/imunologia , Insulina/imunologia , Complexo Principal de Histocompatibilidade/genética , Peptídeos/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Diabetes Mellitus Tipo 1/genética , Feminino , Complexo Principal de Histocompatibilidade/imunologia , Camundongos , Camundongos Endogâmicos NOD , Receptores de Antígenos de Linfócitos T/imunologia
12.
Sci Immunol ; 4(34)2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952805

RESUMO

In type 1 diabetes (T1D), proinsulin is a major autoantigen and the insulin B:9-23 peptide contains epitopes for CD4+ T cells in both mice and humans. This peptide requires carboxyl-terminal mutations for uniform binding in the proper position within the mouse IAg7 or human DQ8 major histocompatibility complex (MHC) class II (MHCII) peptide grooves and for strong CD4+ T cell stimulation. Here, we present crystal structures showing how these mutations control CD4+ T cell receptor (TCR) binding to these MHCII-peptide complexes. Our data reveal stricking similarities between mouse and human CD4+ TCRs in their interactions with these ligands. We also show how fusions between fragments of B:9-23 and of proinsulin C-peptide create chimeric peptides with activities as strong or stronger than the mutated insulin peptides. We propose transpeptidation in the lysosome as a mechanism that could accomplish these fusions in vivo, similar to the creation of fused peptide epitopes for MHCI presentation shown to occur by transpeptidation in the proteasome. Were this mechanism limited to the pancreas and absent in the thymus, it could provide an explanation for how diabetogenic T cells escape negative selection during development but find their modified target antigens in the pancreas to cause T1D.


Assuntos
Autoantígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Insulina/imunologia , Fragmentos de Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Sequência de Aminoácidos/genética , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/genética , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Antígenos HLA-DQ/imunologia , Antígenos HLA-DQ/metabolismo , Humanos , Hibridomas , Tolerância Imunológica , Insulina/genética , Insulina/metabolismo , Lisossomos/imunologia , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Simulação de Acoplamento Molecular , Mutação , Pâncreas/citologia , Pâncreas/imunologia , Pâncreas/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios Proteicos/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Timo/citologia , Timo/imunologia , Timo/metabolismo
13.
Diabetes ; 67(9): 1836-1846, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29976617

RESUMO

We recently established that hybrid insulin peptides (HIPs), formed in islet ß-cells by fusion of insulin C-peptide fragments to peptides of chromogranin A or islet amyloid polypeptide, are ligands for diabetogenic CD4 T-cell clones. The goal of this study was to investigate whether HIP-reactive T cells were indicative of ongoing autoimmunity. MHC class II tetramers were used to investigate the presence, phenotype, and function of HIP-reactive and insulin-reactive T cells in NOD mice. Insulin-reactive T cells encounter their antigen early in disease, but they express FoxP3 and therefore may contribute to immune regulation. In contrast, HIP-reactive T cells are proinflammatory and highly diabetogenic in an adoptive transfer model. Because the frequency of antigen-experienced HIP-reactive T cells increases over progression of disease, they may serve as biomarkers of autoimmune diabetes.


Assuntos
Autoantígenos/metabolismo , Peptídeo C/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Cromogranina A/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Recombinação Genética , Animais , Autoantígenos/química , Autoantígenos/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Doenças Autoimunes/fisiopatologia , Autoimunidade , Biomarcadores/sangue , Peptídeo C/química , Peptídeo C/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Células Cultivadas , Cromogranina A/química , Cromogranina A/genética , Células Clonais , Cruzamentos Genéticos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/fisiopatologia , Progressão da Doença , Feminino , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Ativação Linfocitária , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Organismos Livres de Patógenos Específicos
14.
J Immunol ; 199(7): 2279-2290, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28827283

RESUMO

Sarcoidosis is a granulomatous disease that primarily affects the lungs and is characterized by an accumulation of CD4+ T cells in the bronchoalveolar lavage (BAL). Previous work has indicated that HLA-DRB1*03:01+ (DR3+) patients diagnosed with the acute form of the disease, Löfgren's syndrome (LS), have an accumulation of CD4+ T cells bearing TCRs using TRAV12-1 (formerly AV2S3). However, the importance of these α-chains in disease pathogenesis and the paired TCRß-chain remains unknown. This study aimed to identify expanded αßTCR pairs expressed on CD4+ T cells derived from the BAL of DR3+ LS patients. Using a deep-sequencing approach, we determined TCRα- and TCRß-chain usage, as well as αßTCR pairs expressed on BAL CD4+ T cells from LS patients. TRAV12-1 and TRBV2 (formerly BV22) were the most expanded V region gene segments in DR3+ LS patients relative to control subjects, and TRAV12-1 and TRBV2 CDR3 motifs were shared among multiple DR3+ LS patients. When assessing αßTCR pairing, TRAV12-1 preferentially paired with TRBV2, and these TRAV12-1/TRBV2 TCRs displayed CDR3 homology. These findings suggest that public CD4+ TCR repertoires exist among LS patients and that these T cells are recognizing the putative sarcoidosis-associated Ag(s) in the context of DR3.


Assuntos
Líquido da Lavagem Broncoalveolar/citologia , Pulmão/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Sarcoidose Pulmonar/imunologia , Doença Aguda , Adulto , Idoso , Líquido da Lavagem Broncoalveolar/imunologia , Linfócitos T CD4-Positivos/imunologia , Feminino , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/genética , Membro 25 de Receptores de Fatores de Necrose Tumoral/imunologia
15.
Dev Comp Immunol ; 73: 156-162, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28365195

RESUMO

Regulatory T (Treg) cells play a central role in the suppression of excessive immune responses against both self and non-self antigens. The development and function of Treg cells are controlled by a master regulatory gene encoding the forkhead box P3 (FOXP3) protein in mammals. However, little is known regarding the functions of Treg cells and FOXP3 in non-mammalian vertebrates. In this study, we generated mutant zebrafish lacking a functional FOXP3 ortholog, and demonstrated a significant reduction in survival accompanied by a marked increase in inflammatory gene expression, mononuclear cell infiltration, and T cell proliferation in peripheral tissues. Our findings indicate that the zebrafish FOXP3 protein may have an evolutionally conserved role in the control of immune tolerance, illuminating the potential of the zebrafish as a novel model for investigating the development and functions of Treg cells.


Assuntos
Fatores de Transcrição Forkhead/imunologia , Tolerância a Antígenos Próprios/imunologia , Linfócitos T Reguladores/imunologia , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/imunologia , Animais , Animais Geneticamente Modificados
16.
J Immunol ; 193(2): 571-9, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24943217

RESUMO

Autoreactive T cells infiltrating the target organ can possess a broad TCR affinity range. However, the extent to which such biophysical parameters contribute to T cell pathogenic potential remains unclear. In this study, we selected eight InsB9-23-specific TCRs cloned from CD4(+) islet-infiltrating T cells that possessed a relatively broad range of TCR affinity to generate NOD TCR retrogenic mice. These TCRs exhibited a range of two-dimensional affinities (∼ 10(-4)-10(-3) µm(4)) that correlated with functional readouts and responsiveness to activation in vivo. Surprisingly, both higher and lower affinity TCRs could mediate potent insulitis and autoimmune diabetes, suggesting that TCR affinity does not exclusively dictate or correlate with diabetogenic potential. Both central and peripheral tolerance mechanisms selectively impinge on the diabetogenic potential of high-affinity TCRs, mitigating their pathogenicity. Thus, TCR affinity and multiple tolerance mechanisms converge to shape and broaden the diabetogenic T cell repertoire, potentially complicating efforts to induce broad, long-term tolerance.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Tolerância Imunológica/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Transferência Adotiva , Sequência de Aminoácidos , Animais , Ligação Competitiva/imunologia , Transplante de Medula Óssea/métodos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Feminino , Citometria de Fluxo , Insulina/deficiência , Insulina/genética , Insulina/imunologia , Interleucina-2/imunologia , Interleucina-2/metabolismo , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Dados de Sequência Molecular , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Linfócitos T/transplante
17.
J Immunol ; 191(8): 3990-4, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24043895

RESUMO

We previously reported a peptide KS20 from islet amyloid polypeptide (IAPP) to be the target Ag for a highly diabetogenic CD4 T cell clone BDC-5.2.9. To track IAPP-reactive T cells in NOD mice and determine how they contribute to the pathogenesis of type 1 diabetes, we designed a new I-Ag7 tetramer with high affinity for BDC-5.2.9 that contains the peptide KS20. We found that significant numbers of KS20 tetramer(+) CD4 T cells can be detected in the pancreas of prediabetic and diabetic NOD mice. To verify pathogenicity of IAPP-reactive cells, we sorted KS20 tetramer(+) cells and cloned them from uncloned T cell lines isolated from spleen and lymph nodes of diabetic mice. We isolated a new KS20-reactive Th1 CD4 T cell clone that rapidly transfers diabetes. Our results suggest that IAPP triggers a broad autoimmune response by CD4 T cells in NOD mice.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/imunologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/imunologia , Estado Pré-Diabético/imunologia , Transferência Adotiva , Animais , Autoantígenos/imunologia , Autoimunidade/imunologia , Células Cultivadas , Antígenos de Histocompatibilidade Classe II/imunologia , Linfonodos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Pâncreas/imunologia , Baço/citologia
18.
Nat Protoc ; 8(10): 1837-40, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24008379

RESUMO

The use of retrogenic mice offers a rapid and flexible approach to T cell receptor (TCR)-transgenic mice. By transducing bone marrow progenitor cells with a retrovirus that encodes a given TCR-α/ß subunit, TCR-retrogenic mice can be generated in as few as 4-6 weeks, whereas conventional TCR transgenics can take 6 months or longer. In this updated protocol, we have increased the efficiency of the bone marrow transduction and bone marrow reconstitution compared with our previously published protocol. The main departure from the previous protocol is the implementation of spin transduction with the viral supernatant instead of coculture with the viral producer cell line. The changes in this protocol improve bone marrow viability, increase consistency of the bone marrow transduction and bone marrow engraftment, and they reduce the ratio of bone marrow donor mice to bone marrow recipients.


Assuntos
Técnicas de Transferência de Genes , Receptores de Antígenos de Linfócitos T/genética , Animais , Transplante de Medula Óssea/métodos , Camundongos , Retroviridae/genética , Fatores de Tempo
19.
Immunity ; 38(5): 984-97, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23623381

RESUMO

Regulation of metabolic pathways in the immune system provides a mechanism to actively control cellular function, growth, proliferation, and survival. Here, we report that miR-181 is a nonredundant determinant of cellular metabolism and is essential for supporting the biosynthetic demands of early NKT cell development. As a result, miR-181-deficient mice showed a complete absence of mature NKT cells in the thymus and periphery. Mechanistically, miR-181 modulated expression of the phosphatase PTEN to control PI3K signaling, which was a primary stimulus for anabolic metabolism in immune cells. Thus miR-181-deficient mice also showed severe defects in lymphoid development and T cell homeostasis associated with impaired PI3K signaling. These results uncover miR-181 as essential for NKT cell development and establish this family of miRNAs as central regulators of PI3K signaling and global metabolic fitness during development and homeostasis.


Assuntos
Linfopoese/genética , MicroRNAs/metabolismo , Células T Matadoras Naturais/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Animais , Diferenciação Celular , Quimiocina CXCL12/metabolismo , Regulação para Baixo , Homeostase , Linfócitos/metabolismo , Camundongos , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética
20.
Cell Mol Life Sci ; 68(14): 2335-43, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21553233

RESUMO

γδ T cells express adaptive antigen receptors encoded by rearranging genes. Their diversity is highest in the small region of TCR V-J junctions, especially in the δ chain, which should enable the γδ TCRs to distinguish differences in small epitopes. Indeed, recognition of small molecules, and of an epitope on a larger protein has been reported. Responses to small non-peptides known as phospho-antigens are multi-clonal yet limited to a single γδ T cell subset in humans and non-human primates. Responses to small peptides are multi-clonal or oligo-clonal, include more than one subset of γδ T cells, and occur in rodents and primates. However, less effort has been devoted to investigate the peptide responses. To settle the questions of whether peptides can be ligands for the γδ TCRs, and whether responses to small peptides might occur normally, peptide binding will have to be demonstrated, and natural peptide ligands identified.


Assuntos
Antígenos/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Animais , Antígenos/metabolismo , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Humanos , Peptídeos/metabolismo , Ligação Proteica/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA