Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
J Allergy Clin Immunol Glob ; 3(3): 100287, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39040657

RESUMO

Background: Massive eosinophil infiltration into the esophagus is associated with subepithelial fibrosis and esophageal stricture in patients with eosinophilic esophagitis (EoE). However, the pathogenesis of esophageal fibrosis remains unclear. Objective: We sought to elucidate the cellular and molecular mechanisms underlying the induction of esophageal fibrosis. Methods: We established a murine model of EoE accompanied by fibrotic responses following long-term intranasal administration of house dust mite antigen. Using this murine model, we investigated the characteristics of immune cells infiltrating the fibrotic region of the inflamed esophagus using flow cytometry and histological analyses. We also analyzed the local inflammatory sites in the esophagus of patients with EoE using single-cell RNA sequencing, flow cytometry, and immunohistochemistry. Results: Enhanced infiltration of both amphiregulin-producing and IL-5-producing TH2 cells was detected in the fibrotic area of the esophagus in mice subjected to repeated house dust mite exposure. Deletion of amphiregulin in CD4+ T cells ameliorates esophageal fibrosis. An analysis of human esophageal biopsy samples showed that the infiltration of amphiregulin-producing CD4+ T cells was higher in patients with EoE than in control patients. Furthermore, the number of infiltrated amphiregulin-producing CD4+ T cells was associated with the degree of esophageal fibrosis in patients with EoE. Conclusions: Amphiregulin, produced by TH2 cells, contributes to esophageal fibrosis in EoE and may be a therapeutic target.

2.
Nat Immunol ; 24(12): 2080-2090, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957354

RESUMO

Aberrant differentiation of progenitor cells in the hematopoietic system is known to severely impact host immune responsiveness. Here we demonstrate that NOD1, a cytosolic innate sensor of bacterial peptidoglycan, also functions in murine hematopoietic cells as a major regulator of both the generation and differentiation of lymphoid progenitors as well as peripheral T lymphocyte homeostasis. We further show that NOD1 mediates these functions by facilitating STAT5 signaling downstream of hematopoietic cytokines. In steady-state, loss of NOD1 resulted in a modest but significant decrease in numbers of mature T, B and natural killer cells. During systemic protozoan infection this defect was markedly enhanced, leading to host mortality. Lack of functional NOD1 also impaired T cell-dependent anti-tumor immunity while preventing colitis. These findings reveal that, in addition to its classical role as a bacterial ligand receptor, NOD1 plays an important function in regulating adaptive immunity through interaction with a major host cytokine signaling pathway.


Assuntos
Imunidade Inata , Linfopoese , Animais , Camundongos , Colite , Ligantes , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 120(49): e2302903120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015852

RESUMO

Uncontrolled type 2 immunity by type 2 helper T (Th2) cells causes intractable allergic diseases; however, whether the interaction of CD4+ T cells shapes the pathophysiology of allergic diseases remains unclear. We identified a subset of Th2 cells that produced the serine proteases granzyme A and B early in differentiation. Granzymes cleave protease-activated receptor (Par)-1 and induce phosphorylation of p38 mitogen-activated protein kinase (MAPK), resulting in the enhanced production of IL-5 and IL-13 in both mouse and human Th2 cells. Ubiquitin-specific protease 7 (USP7) regulates IL-4-induced phosphorylation of STAT3, resulting in granzyme production during Th2 cell differentiation. Genetic deletion of Usp7 or Gzma and pharmacological blockade of granzyme B ameliorated allergic airway inflammation. Furthermore, PAR-1+ and granzyme+ Th2 cells were colocalized in nasal polyps from patients with eosinophilic chronic rhinosinusitis. Thus, the USP7-STAT3-granzymes-Par-1 pathway is a potential therapeutic target for intractable allergic diseases.


Assuntos
Hipersensibilidade , Células Th2 , Humanos , Animais , Camundongos , Granzimas/genética , Granzimas/metabolismo , Interleucina-5/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Inflamação/metabolismo , Diferenciação Celular , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
4.
Sci Immunol ; 8(86): eadd4346, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540735

RESUMO

Metabolic fluxes involving fatty acid biosynthesis play essential roles in controlling the differentiation of T helper 17 (TH17) cells. However, the exact enzymes and lipid metabolites involved, as well as their link to promoting the core gene transcriptional signature required for the differentiation of TH17 cells, remain largely unknown. From a pooled CRISPR-based screen and unbiased lipidomics analyses, we identified that 1-oleoyl-lysophosphatidylethanolamine could act as a lipid modulator of retinoid-related orphan receptor gamma t (RORγt) activity in TH17 cells. In addition, we specified five enzymes, including Gpam, Gpat3, Lplat1, Pla2g12a, and Scd2, suggestive of the requirement of glycerophospholipids with monounsaturated fatty acids being required for the transcription of Il17a. 1-Oleoyl-lysophosphatidylethanolamine was reduced in Pla2g12a-deficient TH17 cells, leading to the abolition of interleukin-17 (IL-17) production and disruption to the core transcriptional program required for the differentiation of TH17 cells. Furthermore, mice with T cell-specific deficiency of Pla2g12a failed to develop disease in an experimental autoimmune encephalomyelitis model of multiple sclerosis. Thus, our data indicate that 1-oleoyl-lysophosphatidylethanolamine is a lipid metabolite that promotes RORγt-induced TH17 cell differentiation and the pathogenicity of TH17 cells.


Assuntos
Encefalomielite Autoimune Experimental , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Camundongos , Animais , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Diferenciação Celular , Lipídeos
5.
Proc Natl Acad Sci U S A ; 120(6): e2214824120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-37406303

RESUMO

The three mammalian TET dioxygenases oxidize the methyl group of 5-methylcytosine in DNA, and the oxidized methylcytosines are essential intermediates in all known pathways of DNA demethylation. To define the in vivo consequences of complete TET deficiency, we inducibly deleted all three Tet genes in the mouse genome. Tet1/2/3-inducible TKO (iTKO) mice succumbed to acute myeloid leukemia (AML) by 4 to 5 wk. Single-cell RNA sequencing of Tet iTKO bone marrow cells revealed the appearance of new myeloid cell populations characterized by a striking increase in expression of all members of the stefin/cystatin gene cluster on mouse chromosome 16. In patients with AML, high stefin/cystatin gene expression correlates with poor clinical outcomes. Increased expression of the clustered stefin/cystatin genes was associated with a heterochromatin-to-euchromatin compartment switch with readthrough transcription downstream of the clustered stefin/cystatin genes as well as other highly expressed genes, but only minor changes in DNA methylation. Our data highlight roles for TET enzymes that are distinct from their established function in DNA demethylation and instead involve increased transcriptional readthrough and changes in three-dimensional genome organization.


Assuntos
Dioxigenases , Leucemia Mieloide Aguda , Animais , Camundongos , Heterocromatina/genética , Eucromatina , Metilação de DNA , 5-Metilcitosina/metabolismo , Leucemia Mieloide Aguda/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Mamíferos/genética
6.
Cancer Immunol Res ; 11(8): 1085-1099, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37216576

RESUMO

Tumor-specific CD8+ T cells play a pivotal role in antitumor immunity and are a key target of immunotherapeutic approaches. Intratumoral CD8+ T cells are heterogeneous; Tcf1+ stemlike CD8+ T cells give rise to their cytotoxic progeny-Tim-3+ terminally differentiated CD8+ T cells. However, where and how this differentiation process occurs has not been elucidated. We herein show that terminally differentiated CD8+ T cells can be generated within tumor-draining lymph nodes (TDLN) and that CD69 expression on tumor-specific CD8+ T cells controls its differentiation process through regulating the expression of the transcription factor TOX. In TDLNs, CD69 deficiency diminished TOX expression in tumor-specific CD8+ T cells, and consequently promoted generation of functional terminally differentiated CD8+ T cells. Anti-CD69 administration promoted the generation of terminally differentiated CD8+ T cells, and the combined use of anti-CD69 and anti-programmed cell death protein 1 (PD-1) showed an efficient antitumor effect. Thus, CD69 is an attractive target for cancer immunotherapy that synergizes with immune checkpoint blockade.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/patologia , Diferenciação Celular , Linfonodos
8.
Photodiagnosis Photodyn Ther ; 39: 103041, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35914696

RESUMO

BACKGROUND: Phototheranostics represents a highly promising paradigm for cancer therapy, although selecting an appropriate optical imager and sensitizer for clinical use remains challenging. METHODS: Liposomally formulated phospholipid-conjugated indocyanine green, denoted as LP-iDOPE, was developed as phototheranostic nanoparticle and its cancer imaging-mediated photodynamic reaction, defined as the immune response induced by photodynamic and photothermal effects, was evaluated with a near-infrared (NIR)-light emitting diode (LED) light irradiator. RESULTS: Using in vivo NIR fluorescence imaging, we demonstrated that LP-iDOPE was selectively delivered to tumor sites with high accumulation and a long half-life. Following low-intensity NIR-LED light irradiation on the tumor region of LP-iDOPE accumulated, effector CD8+ T cells were activated at the secondary lymphoid organs, migrated, and subsequently released cytokines including interferon-γ and tumor necrosis factor-α, resulting in effective tumor regression. CONCLUSIONS: Our anti-cancer strategy based on tumor-specific LP-iDOPE accumulation and low-intensity NIR-LED light irradiation to the tumor regions, i.e., photodynamic reaction, represents a promising approach to noninvasive cancer therapy.


Assuntos
Nanopartículas , Fotoquimioterapia , Linfócitos T CD8-Positivos , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Imagem Óptica , Fotoquimioterapia/métodos
9.
Int Immunol ; 34(11): 555-561, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35689672

RESUMO

Cancer immunotherapy utilizes our immune system to attack cancer cells and is an extremely promising strategy for cancer treatment. Although immune-checkpoint blockade, such as anti-PD-1 (programmed cell death 1) antibody, has demonstrated significant enhancement of anti-tumor immunity and has induced notable clinical outcomes, its response rates remain low, and adverse effects are always a matter of concern; therefore, new targets for cancer immunotherapy are always desired. In this situation, new concepts are needed to fuel the investigation of new target molecules for cancer immunotherapy. We propose that CD69 is one such target molecule. CD69 is known to be an activation marker of leukocytes and is also considered a crucial regulator of various immune responses through its interacting proteins. CD69 promotes T-cell retention in lymphoid tissues via sphingosine-1-phosphate receptor 1 (S1P1) internalization and also plays roles in the pathogenesis of inflammatory disorders through interacting with its functional ligands Myl9/12 (myosin light chains 9, 12a and 12b). In anti-tumor immunity, CD69 is known to be expressed on T cells in the tumor microenvironment (TME) and tumor-draining lymph nodes (TDLNs). We revealed that CD69 negatively regulates the effector function of intratumoral T cells and importantly controls the 'exhaustion' of CD8 T cells. In addition, we and others showed that either CD69 deficiency or the administration of anti-CD69 monoclonal antibody enhances anti-tumor immunity. Thus, CD69 is an attractive target for cancer immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Cadeias Leves de Miosina , Anticorpos Monoclonais/uso terapêutico , Linfócitos T CD8-Positivos/metabolismo , Imunoterapia , Cadeias Leves de Miosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Microambiente Tumoral
10.
Sci Rep ; 12(1): 9046, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641585

RESUMO

In bronchial asthma patients, mucous cell metaplasia (MCM) and fibrosis occur in the bronchial epithelium and interstitium, respectively. The mucus and collagen fibers are identified by Periodic acid-Schiff stain (PAS) or Sirius red stain on optical microscopy. On a scanning electron microscope (SEM) observation, formalin-fixed-paraffin-embedded specimens have high insulation, thereby attenuating the scattered electron signals leading to insufficient contrast. Moreover, there were no staining methods for SEM observation, which characterizes the changes in epithelium and interstitium by enhancing the scattered electrons. In this study, we established a method of coating osmium thin film on pathological tissue specimens using plasma chemical vapor deposition technology. This method ensured the intensity of scattered electron signals and enabled SEM observation. Furthermore, we found that morphological changes in MCM and interstitial fibrosis could be characterized by Grocott stain, which we optimized to evaluate pathological remodeling in bronchial asthma. Using these techniques, we compared asthma-induced mice with Amphiregulin (Areg) knockout mice, and found that Areg induce MCM, but the production of Grocott-stain-positive substrate in the interstitium is Areg-independent. The method developed in this study provides an understanding of the pathological spatial information linked to the ultrastructural changes in cells and interstitium due to disease-related signaling abnormalities.


Assuntos
Asma , Animais , Asma/patologia , Corantes , Fibrose , Humanos , Camundongos , Microscopia Eletrônica de Varredura , Inclusão em Parafina , Coloração e Rotulagem
11.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35210367

RESUMO

Mounting evidence suggests that nematode infection can protect against disorders of immune dysregulation. Administration of live parasites or their excretory/secretory (ES) products has shown therapeutic effects across a wide range of animal models for immune disorders, including asthma. Human clinical trials of live parasite ingestion for the treatment of immune disorders have produced promising results, yet concerns persist regarding the ingestion of pathogenic organisms and the immunogenicity of protein components. Despite extensive efforts to define the active components of ES products, no small molecules with immune regulatory activity have been identified from nematodes. Here we show that an evolutionarily conserved family of nematode pheromones called ascarosides strongly modulates the pulmonary immune response and reduces asthma severity in mice. Screening the inhibitory effects of ascarosides produced by animal-parasitic nematodes on the development of asthma in an ovalbumin (OVA) murine model, we found that administration of nanogram quantities of ascr#7 prevented the development of lung eosinophilia, goblet cell metaplasia, and airway hyperreactivity. Ascr#7 suppressed the production of IL-33 from lung epithelial cells and reduced the number of memory-type pathogenic Th2 cells and ILC2s in the lung, both key drivers of the pathology of asthma. Our findings suggest that the mammalian immune system recognizes ascarosides as an evolutionarily conserved molecular signature of parasitic nematodes. The identification of a nematode-produced small molecule underlying the well-documented immunomodulatory effects of ES products may enable the development of treatment strategies for allergic diseases.


Assuntos
Inflamação/prevenção & controle , Nematoides/química , Traqueia/efeitos dos fármacos , Animais , Asma/fisiopatologia , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Hipersensibilidade/fisiopatologia , Inflamação/induzido quimicamente , Camundongos , Camundongos Endogâmicos BALB C , Nematoides/patogenicidade , Ovalbumina/efeitos adversos , Bibliotecas de Moléculas Pequenas/farmacologia , Traqueia/fisiopatologia
12.
J Exp Med ; 218(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34813654

RESUMO

T cells possess distinguishing effector functions and drive inflammatory disorders. We have previously identified IL-5-producing Th2 cells as the pathogenic population predominantly involved in the pathology of allergic inflammation. However, the cell-intrinsic signaling pathways that control the pathogenic Th2 cell function are still unclear. We herein report the high expression of acetyl-CoA carboxylase 1 (ACC1) in the pathogenic CD4+ T cell population in the lung and skin. The genetic deletion of CD4+ T cell-intrinsic ACC1 dampened eosinophilic and basophilic inflammation in the lung and skin by constraining IL-5 or IL-3 production. Mechanistically, ACC1-dependent fatty acid biosynthesis induces the pathogenic cytokine production of CD4+ T cells via metabolic reprogramming and the availability of acetyl-CoA for epigenetic regulation. We thus identified a distinct phenotype of the pathogenic T cell population in the lung and skin, and ACC1 was shown to be an essential regulator controlling the pathogenic function of these populations to promote type 2 inflammation.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Toxidermias/patologia , Pneumonia/patologia , Células Th2/patologia , Acetil-CoA Carboxilase/genética , Administração Tópica , Animais , Basófilos/metabolismo , Basófilos/patologia , Linfócitos T CD4-Positivos/patologia , Calcitriol/análogos & derivados , Calcitriol/toxicidade , Toxidermias/tratamento farmacológico , Toxidermias/genética , Toxidermias/metabolismo , Ácidos Graxos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-3/metabolismo , Interleucina-5/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Pneumonia/genética , Pneumonia/metabolismo , Células Th2/metabolismo
13.
J Exp Med ; 218(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34180951

RESUMO

PU.1 (encoded by Spi1), an ETS-family transcription factor with many hematopoietic roles, is highly expressed in the earliest intrathymic T cell progenitors but must be down-regulated during T lineage commitment. The transcription factors Runx1 and GATA3 have been implicated in this Spi1 repression, but the basis of the timing was unknown. We show that increasing Runx1 and/or GATA3 down-regulates Spi1 expression in pro-T cells, while deletion of these factors after Spi1 down-regulation reactivates its expression. Leveraging the stage specificities of repression and transcription factor binding revealed an unconventional but functional site in Spi1 intron 2. Acute Cas9-mediated deletion or disruption of the Runx and GATA motifs in this element reactivates silenced Spi1 expression in a pro-T cell line, substantially more than disruption of other candidate elements, and counteracts the repression of Spi1 in primary pro-T cells during commitment. Thus, Runx1 and GATA3 work stage specifically through an intronic silencing element in mouse Spi1 to control strength and maintenance of Spi1 repression during T lineage commitment.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fator de Transcrição GATA3/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Linfócitos T/metabolismo , Transativadores/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem da Célula , Subunidade alfa 2 de Fator de Ligação ao Core/química , Fator de Transcrição GATA3/química , Deleção de Genes , Perfilação da Expressão Gênica , Inativação Gênica , Loci Gênicos , Íntrons/genética , Camundongos Endogâmicos C57BL , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo
14.
Genome Biol ; 22(1): 186, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158086

RESUMO

BACKGROUND: TET enzymes mediate DNA demethylation by oxidizing 5-methylcytosine (5mC) in DNA to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Since these oxidized methylcytosines (oxi-mCs) are not recognized by the maintenance methyltransferase DNMT1, DNA demethylation can occur through "passive," replication-dependent dilution when cells divide. A distinct, replication-independent ("active") mechanism of DNA demethylation involves excision of 5fC and 5caC by the DNA repair enzyme thymine DNA glycosylase (TDG), followed by base excision repair. RESULTS: Here by analyzing inducible gene-disrupted mice, we show that DNA demethylation during primary T cell differentiation occurs mainly through passive replication-dependent dilution of all three oxi-mCs, with only a negligible contribution from TDG. In addition, by pyridine borane sequencing (PB-seq), a simple recently developed method that directly maps 5fC/5caC at single-base resolution, we detect the accumulation of 5fC/5caC in TDG-deleted T cells. We also quantify the occurrence of concordant demethylation within and near enhancer regions in the Il4 locus. In an independent system that does not involve cell division, macrophages treated with liposaccharide accumulate 5hmC at enhancers and show altered gene expression without DNA demethylation; loss of TET enzymes disrupts gene expression, but loss of TDG has no effect. We also observe that mice with long-term (1 year) deletion of Tdg are healthy and show normal survival and hematopoiesis. CONCLUSIONS: We have quantified the relative contributions of TET and TDG to cell differentiation and DNA demethylation at representative loci in proliferating T cells. We find that TET enzymes regulate T cell differentiation and DNA demethylation primarily through passive dilution of oxi-mCs. In contrast, while we observe a low level of active, replication-independent DNA demethylation mediated by TDG, this process does not appear to be essential for immune cell activation or differentiation.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Macrófagos/enzimologia , Linfócitos T/enzimologia , Timina DNA Glicosilase/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Citosina/análogos & derivados , Citosina/metabolismo , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/deficiência , Dioxigenases/deficiência , Elementos Facilitadores Genéticos , Expressão Gênica , Loci Gênicos , Hematopoese/genética , Interleucina-4/genética , Interleucina-4/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Lipopolissacarídeos/farmacologia , Longevidade/genética , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Linfócitos T/citologia , Linfócitos T/imunologia , Timina DNA Glicosilase/deficiência
15.
Cancer Immunol Immunother ; 70(5): 1239-1254, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33128583

RESUMO

Glioblastoma is the most common and aggressive type of brain tumor with high recurrence and fatality rates. Although various therapeutic strategies have been explored, there is currently no effective treatment for glioblastoma. Recently, the number of immunotherapeutic strategies has been tested for malignant brain tumors. Invariant natural killer T (iNKT) cells play an important role in anti-tumor immunity. To address if iNKT cells can target glioblastoma to exert anti-tumor activity, we assessed the expression of CD1d, an antigen-presenting molecule for iNKT cells, on glioblastoma cells. Glioblastoma cells from 10 of 15 patients expressed CD1d, and CD1d-positive glioblastoma cells pulsed with glycolipid ligand induced iNKT cell-mediated cytotoxicity in vitro. Although CD1d expression was low on glioblastoma stem-like cells, retinoic acid, which is the most common differentiating agent, upregulated CD1d expression in these cells and induced iNKT cell-mediated cytotoxicity. Moreover, intracranial administration of human iNKT cells induced tumor regression of CD1d-positive glioblastoma in orthotopic xenografts in NOD/Shi-scid IL-2RγKO (NOG) mice. Thus, CD1d expression represents a novel target for NKT cell-based immunotherapy for glioblastoma patients.


Assuntos
Antígenos CD1d/metabolismo , Neoplasias Encefálicas/imunologia , Vacinas Anticâncer/imunologia , Glioblastoma/imunologia , Imunoterapia Adotiva/métodos , Células T Matadoras Naturais/metabolismo , Idoso , Animais , Apresentação de Antígeno , Neoplasias Encefálicas/terapia , Células Cultivadas , Citotoxicidade Imunológica , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/terapia , Humanos , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/transplante , Transplante de Neoplasias , Tretinoína/metabolismo
16.
Front Immunol ; 11: 1536, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793209

RESUMO

Memory helper T (Th) cells are crucial for secondary immune responses against infectious microorganisms but also drive the pathogenesis of chronic inflammatory diseases. Therefore, it is of fundamental importance to understand how memory T cells are generated. However, the molecular mechanisms governing memory Th cell generation remain incompletely understood. Here, we identified CD30 as a molecule heterogeneously expressed on effector Th1 and Th17 cells, and CD30hi effector Th1 and Th17 cells preferentially generated memory Th1 and Th17 cells. We found that CD30 mediated signal induced Transglutaminase-2 (TG2) expression, and that the TG2 expression in effector Th cells is essential for memory Th cell generation. In fact, Cd30-deficiency resulted in the impaired generation of memory Th1 and Th17 cells, which can be rescued by overexpression of TG2. Furthermore, transglutaminase-2 (Tgm2)-deficient CD4 T cells failed to become memory Th cells. As a result, T cells from Tgm2-deficient mice displayed impaired antigen-specific antibody production and attenuated Th17-mediated allergic responses. Our data indicate that CD30-induced TG2 expression in effector Th cells is essential for the generation of memory Th1 and Th17 cells, and that CD30 can be a marker for precursors of memory Th1 and Th17 cells.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Memória Imunológica , Antígeno Ki-1/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Transglutaminases/metabolismo , Transferência Adotiva , Animais , Diferenciação Celular/imunologia , Imunofenotipagem , Camundongos , Camundongos Transgênicos , Proteína 2 Glutamina gama-Glutamiltransferase , Transdução de Sinais , Células Th1/citologia , Células Th17/citologia
17.
Proc Natl Acad Sci U S A ; 117(25): 14365-14375, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513690

RESUMO

Proper resolution of inflammation is vital for repair and restoration of homeostasis after tissue damage, and its dysregulation underlies various noncommunicable diseases, such as cardiovascular and metabolic diseases. Macrophages play diverse roles throughout initial inflammation, its resolution, and tissue repair. Differential metabolic reprogramming is reportedly required for induction and support of the various macrophage activation states. Here we show that a long noncoding RNA (lncRNA), lncFAO, contributes to inflammation resolution and tissue repair in mice by promoting fatty acid oxidation (FAO) in macrophages. lncFAO is induced late after lipopolysaccharide (LPS) stimulation of cultured macrophages and in Ly6Chi monocyte-derived macrophages in damaged tissue during the resolution and reparative phases. We found that lncFAO directly interacts with the HADHB subunit of mitochondrial trifunctional protein and activates FAO. lncFAO deletion impairs resolution of inflammation related to endotoxic shock and delays resolution of inflammation and tissue repair in a skin wound. These results demonstrate that by tuning mitochondrial metabolism, lncFAO acts as a node of immunometabolic control in macrophages during the resolution and repair phases of inflammation.


Assuntos
Ácidos Graxos/metabolismo , Inflamação/imunologia , Macrófagos/imunologia , Subunidade beta da Proteína Mitocondrial Trifuncional/genética , RNA Longo não Codificante/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Masculino , Camundongos , Subunidade beta da Proteína Mitocondrial Trifuncional/metabolismo , Oxirredução , Cultura Primária de Células , RNA Longo não Codificante/genética , Pele/imunologia , Pele/lesões , Cicatrização/imunologia
18.
Cancer Sci ; 111(7): 2223-2233, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32324315

RESUMO

Invariant natural killer T (iNKT) cells are innate-like CD1d-restricted T cells that express the invariant T cell receptor (TCR) composed of Vα24 and Vß11 in humans. iNKT cells specifically recognize glycolipid antigens such as α-galactosylceramide (αGalCer) presented by CD1d. iNKT cells show direct cytotoxicity toward CD1d-positive tumor cells, especially when CD1d presents glycolipid antigens. However, iNKT cell recognition of CD1d-negative tumor cells is unknown, and direct cytotoxicity of iNKT cells toward CD1d-negative tumor cells remains controversial. Here, we demonstrate that activated iNKT cells recognize leukemia cells in a CD1d-independent manner, however still in a TCR-mediated way. iNKT cells degranulated and released Th1 cytokines toward CD1d-negative leukemia cells (K562, HL-60, REH) as well as αGalCer-loaded CD1d-positive Jurkat cells. The CD1d-independent cytotoxicity was enhanced by natural killer cell-activating receptors such as NKG2D, 2B4, DNAM-1, LFA-1 and CD2, but iNKT cells did not depend on these receptors for the recognition of CD1d-negative leukemia cells. In contrast, TCR was essential for CD1d-independent recognition and cytotoxicity. iNKT cells degranulated toward patient-derived leukemia cells independently of CD1d expression. iNKT cells targeted myeloid malignancies more than acute lymphoblastic leukemia. These findings reveal a novel anti-tumor mechanism of iNKT cells in targeting CD1d-negative tumor cells and indicate the potential of iNKT cells for clinical application to treat leukemia independently of CD1d.


Assuntos
Antígenos CD1d/metabolismo , Leucemia/imunologia , Leucemia/metabolismo , Ativação Linfocitária/imunologia , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Animais , Antígenos CD1d/genética , Biomarcadores , Degranulação Celular , Linhagem Celular Tumoral , Receptores Coestimuladores e Inibidores de Linfócitos T/metabolismo , Citocinas/metabolismo , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Edição de Genes , Xenoenxertos , Humanos , Imunofenotipagem , Leucemia/genética , Leucemia/patologia , Ativação Linfocitária/genética , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores Desencadeadores da Citotoxicidade Natural/metabolismo
19.
J Immunother Cancer ; 8(1)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32188702

RESUMO

BACKGROUND: Invariant natural killer T (iNKT) cells produce copious amounts of cytokines in response to specific glycolipid antigens such as α-galactosylceramide (αGalCer) presented by CD1d-expressing antigen-presenting cells (APCs), thus orchestrating other immune cells to fight tumors. Because of their ability to induce strong antitumor responses activated by αGalCer, iNKT cells have been studied for their application in cancer immunotherapy. In our previous phase I/II trial in non-small cell lung cancer (NSCLC) patients who had completed the standard treatment, we showed a relatively long median survival time without severe treatment-related adverse events. Based on these results, we performed a phase II trial to evaluate clinical responses, safety profiles and immune responses as a second-line treatment for advanced NSCLC. METHODS: Patients with advanced or recurrent NSCLC refractory to first-line chemotherapy were eligible. αGalCer-pulsed APCs were intravenously administered four times. Overall survival time was evaluated as the primary endpoint. The safety profile and immune responses after APC injection were also monitored. This study was an open label, single-arm, phase II clinical trial performed at Chiba University Hospital, Japan. RESULTS: Thirty-five patients were enrolled in this study, of which 32 (91.4%) completed the trial. No severe adverse events related to the treatment were observed. The estimated median survival time of the 35 cases was 21.9 months (95% CI, 14.8 to 26.0). One case (2.9%) showed a partial response, 14 cases (40.0%) remained as stable disease, and 19 cases (54.3%) were evaluated as progressive disease. The geometric mean number of iNKT cells in all cases was significantly decreased and the mean numbers of natural killer (NK) cells, interferon-γ-producing cells in response to αGalCer, and effector CD8+ T cells were significantly increased after the administration of αGalCer-pulsed APCs. CONCLUSIONS: The intravenous administration of αGalCer-pulsed APCs was well-tolerated and was accompanied by prolonged overall survival. These results are encouraging and warrant further evaluation in a randomized phase III trial to demonstrate the survival benefit of this immunotherapy. TRIAL REGISTRATION NUMBER: UMIN000007321.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Galactosilceramidas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Cancer Immunol Immunother ; 68(12): 1935-1947, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31641795

RESUMO

BACKGROUND: Due to the strong tumoricidal activities of activated natural killer T (NKT) cells, invariant NKT cell-based immunotherapy has shown promising clinical efficacy. However, suppressive factors, such as regulatory T cells (Tregs), may be obstacles in the use of NKT cell-based cancer immunotherapy for advanced cancer patients. Here, we investigated the suppressive effects of Tregs on NKT cells and the underlying mechanisms with the aim to improve the antitumor activities of NKT cells. METHODS: Peripheral blood samples were obtained from healthy donors, patients with benign tumors, and patients with head and neck squamous cell carcinoma (HNSCC). NKT cells, induced with α-galactosylceramide (α-GalCer), and monocyte-derived dendritic cells (DCs) were co-cultured with naïve CD4+ T cell-derived Tregs to investigate the mechanism of the Treg suppressive effect on NKT cell cytotoxic function. The functions and phenotypes of NKT cells were evaluated with flow cytometry and cytometric bead array. RESULTS: Treg suppression on NKT cell function required cell-to-cell contact and was mediated via impaired DC maturation. NKT cells cultured under Treg-enriched conditions showed a decrease in CD4- NKT cell frequency, which exert strong tumoricidal responsiveness upon α-GalCer stimulation. The same results were observed in HNSCC patients with significantly increased effector Tregs. CONCLUSION: Tregs exert suppressive effects on NKT cell tumoricidal function by inducing more CD4- NKT cell anergy and less CD4+ NKT cell anergy. Both Treg depletion and NKT cell recovery from the anergy state may be important for improving the clinical efficacy of NKT cell-based immunotherapy in patients with advanced cancers.


Assuntos
Neoplasias de Cabeça e Pescoço/imunologia , Células T Matadoras Naturais/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Linfócitos T Reguladores/imunologia , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Anergia Clonal , Citotoxicidade Imunológica , Feminino , Humanos , Vigilância Imunológica , Terapia de Imunossupressão , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA