Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 183: 146-156, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838904

RESUMO

Macrophages are the primary cell type orchestrating bioresorbable vascular graft (BVG) remodeling and infiltrate from three sources: the adjacent native vessel, circulating blood, and transmural migration from outer surface of the graft. To elucidate the kinetics of macrophage infiltration into the BVG, we fabricated two different bilayer arterial BVGs consisting of a macroporous sponge layer and a microporous electrospun (ES) layer. The Outer ES graft was designed to reduce transmural cell infiltration from the outer surface and the Inner ES graft was designed to reduce cell infiltration from the circulation. These BVGs were implanted in mice as infrarenal abdominal aorta grafts and extracted at 1, 4, and 8 weeks (n = 5, 10, and 10 per group, respectively) for evaluation. Cell migration into BVGs was higher in the Inner ES graft than in the Outer ES graft. For Inner ES grafts, the majority of macrophage largely expressed a pro-inflammatory M1 phenotype but gradually changed to tissue-remodeling M2 macrophages. In contrast, in Outer ES grafts macrophages primarily maintained an M1 phenotype. The luminal surface endothelialized faster in the Inner ES graft; however, the smooth muscle cell layer was thicker in the Outer ES graft. Collagen fibers were more abundant and matured faster in the Inner ES graft than that in the Outer ES graft. In conclusion, compared to macrophages infiltrating from the circulating blood, transmural macrophages from outside promote the acute inflammatory-mediated response for vascular remodeling and subsequent collagen deposition within BVGs. STATEMENT OF SIGNIFICANCE: To elucidate the kinetics of macrophage infiltration into the bioresorbable vascular graft (BVG), two different bilayer arterial BVGs were implanted in mice as infrarenal abdominal aorta grafts. Cell migration into BVGs was higher in the inner electrospun graft which cells mainly infiltrate from outer surface than in the outer electrospun graft which cells mainly infiltrate from the circulating blood. In the inner electrospun grafts, the majority of macrophages changed from the M1 phenotype to the M2 phenotype, however, outer electrospun grafts maintained the M1 phenotype. Collagen fibers matured faster in the Inner electrospun graft. Compared to macrophages infiltrating from the circulating blood, transmural macrophages from outside promote the acute inflammatory-mediated response for vascular remodeling and subsequent collagen deposition within BVGs.


Assuntos
Implantes Absorvíveis , Prótese Vascular , Movimento Celular , Colágeno , Inflamação , Macrófagos , Remodelação Vascular , Animais , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Masculino , Aorta Abdominal/patologia
2.
Int J Biol Macromol ; 261(Pt 2): 129746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302025

RESUMO

In the development of small-diameter vascular grafts, it is crucial to achieve early-stage endothelialization to prevent thrombus formation and intimal hyperplasia. Silk fibroin (SF) from Bombyx mori is commonly used for such grafts. However, there is a need to expedite endothelialization post-implantation. In this study, we functionalized SF with Arg-Glu-Asp-Val (REDV) (SF + REDV) using cyanuric chloride to enhance endothelialization. The immobilization of REDV onto SF was confirmed and the amount of immobilized REDV could be calculated by 1H NMR. Furthermore, the conformational changes in Tyr, Ser, and Ala residues in [3-13C]Tyr- and [3-13C]Ser-SF due to REDV immobilization were monitored using 13C solid-state NMR. The REDV immobilized onto the SF film was found to be exposed on the film's surface, as confirmed by biotin-avidin system. Cell culture experiments, including adhesiveness, proliferation, and extensibility, were conducted using normal human umbilical vein endothelial cells (HUVEC) and normal human aortic smooth muscle cells (HAoSMC) on both SF and SF + REDV films to evaluate the impact of REDV on endothelialization. The results indicated a trend towards promoting HUVEC proliferation while inhibiting HAoSMC proliferation. Therefore, these findings suggest that SF + REDV may be more suitable than SF alone for coating small-diameter SF knitted tubes made of SF threads.


Assuntos
Bombyx , Fibroínas , Animais , Humanos , Fibroínas/química , Bombyx/química , Células Endoteliais , Peptídeos/química , Espectroscopia de Ressonância Magnética/métodos , Seda
3.
Molecules ; 24(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683683

RESUMO

Silk fibroin (SF) produced by the domesticated wild silkworm, Samia cynthia ricini (S. c. ricini) is attracting increasing interest owing to its unique mechanical properties, biocompatibility, and abundance in nature. However, its utilization is limited, largely due to lack of appropriate processing strategies. Various strategies have been assessed to regenerate cocoon SF, as well as the use of aqueous liquid fibroin (LFaq) prepared by dissolution of silk dope obtained from the silk glands of mature silkworm larvae in water. However, films cast from these fibroin solutions in water or organic solvents are often water-soluble and require post-treatment to render them water-stable. Here, we present a strategy for fabrication of water-stable films from S. c. ricini silk gland fibroin (SGF) without post-treatment. Aqueous ethanol induced gelation of fibroin in the posterior silk glands (PSG), enabling its separation from the rest of the silk gland. When dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), the SGF-gel gave a solution from which a transparent, flexible, and water-insoluble film (SGFHFIP) was cast. Detailed structural characterization of the SGFHFIP as-cast film was carried out and compared to a conventional, water-soluble film cast from LFaq. FTIR and 13C solid-state NMR analyses revealed both cast films to be α-helix-rich. However, gelation of SGF induced by the 40%-EtOH-treatment resulted in an imperfect ß-sheet structure. As a result, the SGF-gel was soluble in HFIP, but some ß-sheet structural memory remains, and the SGFHFIP as-cast film obtained has some ß-sheet content which renders it water-resistant. These results reveal a structure water-solubility relationship in S. c. ricini SF films that may offer useful insights towards tunable fabrication of novel biomaterials. A plausible model of the mechanism that leads to the difference in water resistance of the two kinds of α-helix-rich films is proposed.


Assuntos
Bombyx/química , Fibroínas/química , Propanóis/química , Água/química , Aminoácidos/análise , Animais , Varredura Diferencial de Calorimetria , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Conformação Proteica em alfa-Hélice , Solubilidade , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
4.
Molecules ; 24(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627317

RESUMO

Formation of the α-helical conformation in the poly-l-alanine (PA) sequence regions, subsequent structural transition to ß-sheet during natural spinning, and presence of residual α-helices in Samia cynthia ricini (S. c. ricini) native silk fiber have been experimentally proven. However, the aggregation state of the residual α-helices, and their influence on the mechanical deformation behavior in native fiber remain unclear. Here we show that the α-helices form an ordered aggregation state with a hexagonal packing in the aqueous solution, some of which remain during natural spinning. X-ray scattering and differential scanning calorimetry (DSC) analyses revealed occurrence of a structural transition of the residual α-helices to the ß-sheet structure, accompanied by disappearance of the plateau region in the force-strain curve, due to heat-treatment at ~220 °C. On the basis of X-ray scattering before and after tensile stretching of S. c. ricini native silk, a direct connection between the plateau region and the α-helix to ß-sheet structural transition was confirmed. Our findings demonstrate the importance of the PA sequence regions in fiber structure formation and their influence on the tensile deformation behavior of S. c. ricini silk, features believed to be essentially similar in other saturniid silks. We strongly believe the residual ordered α-helices to be strategically and systematically designed by S. c. ricini silkworms to impart flexibility in native silk fiber. We anticipate that these knowledge forms a basis for fruitful strategies in the design and development of amino acid sequences for artificial silks with desired mechanical properties.


Assuntos
Bombyx/química , Fibroínas/ultraestrutura , Peptídeos/química , Agregados Proteicos , Animais , Bombyx/fisiologia , Fibroínas/isolamento & purificação , Temperatura Alta , Larva/química , Larva/fisiologia , Teste de Materiais , Peptídeos/isolamento & purificação , Maleabilidade , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Resistência à Tração
5.
Surg Today ; 48(5): 486-494, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29256145

RESUMO

PURPOSE: The surgical sheets that are currently used for congenital cardiovascular surgery have several drawbacks, including material deterioration, calcification, and pseudo-intimal proliferation resulting in hemodynamic disturbance. The aim of this study was to evaluate a newly developed sheet made from a combination of silk fibroin (SF) and a synthetic polymer, thermoplastic polyurethane (TPU), for surgical use. METHODS: The hybrid SF/TPU sheet was a non-woven fabric with nanofibers that was made using the electrospinning method. The mechanical properties of the SF/TPU sheet were characterized. To determine its biocompatibility, part of the wall of the canine descending aorta was replaced with a SF/TPU sheet as a patch. The patches were removed after 3 months and a histological examination was performed. RESULTS: The flexibility, water permeability, and suture retention strength of the SF/TPU sheet were excellent and equivalent to those of existing sheets. The SF/TPU sheet had excellent handling properties and fit well into the vascular wall without needle hole bleeding. The histological examination revealed that the intimal tissue was restored well over the intraluminal surface of the explanted SF/TPU sheet, the absence of calcium deposition, and minimal inflammatory reaction, without signs of degradation. CONCLUSION: The SF/TPU sheet had excellent mechanical properties and tissue biocompatibility. These favorable features and possible biodegradability of the SF portion warrant a long-term follow-up study.


Assuntos
Implante de Prótese Vascular/métodos , Procedimentos Cirúrgicos Cardiovasculares/métodos , Fibroínas , Nanofibras , Poliuretanos , Seda , Animais , Aorta Torácica/cirurgia , Materiais Biocompatíveis , Cães , Elasticidade
6.
J Mater Sci Mater Med ; 28(12): 191, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138940

RESUMO

Life-threatening cardiovascular anomalies require surgery for structural repair with cardiovascular patches. The biomaterial patch, derived from Bombyx mori silk fibroin (SF), is used as an alternative material due to its excellent tissue affinity and biocompatibility. However, SF lacks the elastomeric characteristics required for a cardiovascular patch. In order to overcome this shortcoming, we combined the thermoplastic polyurethane, Pellethane® (PU) with SF to develop an elastic biocompatible patch. Therefore, the purpose of this study was to investigate the feasibility of the blended SF/PU patch in a vascular model. Additionally, we focused on the effects of different SF concentrations in the SF/PU patch on its biological and physical properties. Three patches of different compositions (SF, SF7PU3 and SF4PU6) were created using an electrospinning method. Each patch type (n = 18) was implanted into rat abdominal aorta and histopathology was assessed at 1, 3, and 6 months post-implantation. The results showed that with increasing SF content the tensile strength and elasticity decreased. Histological evaluation revealed that inflammation gradually decreased in the SF7PU3 and SF patches throughout the study period. At 6 months post-implantation, the SF7PU3 patch demonstrated progressive remodeling, including significantly higher tissue infiltration, elastogenesis and endothelialization compared with SF4PU6. In conclusion, an increase of SF concentration in the SF/PU patch had effects on vascular remodeling and physical properties. Moreover, our blended patch might be an attractive alternative material that could induce the growth of a neo-artery composed of tissue present in native artery.


Assuntos
Prótese Vascular , Fibroínas/química , Poliuretanos/química , Seda/química , Remodelação Vascular , Animais , Materiais Biocompatíveis/química , Adesão Celular , Masculino , Teste de Materiais , Ratos , Ratos Sprague-Dawley
7.
Organogenesis ; 13(4): 115-124, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28933641

RESUMO

Patch grafts are widely used in various kind of vascular surgeries such as detect repair or dilation of vascular stenosis. Expanded polytetrafluoroethylene (ePTFE) patches are flexible and handle well, but have shown problems with calcification as they are non-bioabsorbable and therefore permanently remain in the body. It is important to develop an alternative biocompatible patch. Silk fibroin (SF) was developed as a biocompatible material, but it lacks of the elasticity required for surgery as a patch. Polyurethane (PU) is also a well-known elastomer so this study focused on the SF and the PU blend materials with a weight ratio of 5:5 (SF/PU). To evaluate the SF/PU patch, the patches were implanted into the abdominal aortas of rats, using the ePTFE patch in the control group. Because it was more flexible the SF/PU patch was easier to implant than the ePTFE patch. At 1 week after implantation, the SF/PU patch had been infiltrated with cells and collagen fiber. The ePTFE control patch did not accumulate collagen fiber until 3 months and calcification occurred at 4 weeks. The SF/PU patch did not present any signs of calcification for 3 months. This study addressed the problems associated with using SF in isolation and showed that the SF/PU patch can be considered as a useful alternative to the ePTFE to overcome the problem of calcification.


Assuntos
Aorta Abdominal/efeitos dos fármacos , Prótese Vascular , Vasos Sanguíneos/efeitos dos fármacos , Fibroínas/química , Poliuretanos/química , Animais , Aorta Abdominal/fisiologia , Materiais Biocompatíveis/química , Vasos Sanguíneos/fisiologia , Bombyx , Calcinose , Colágeno/química , Elasticidade , Inflamação , Masculino , Teste de Materiais , Desenho de Prótese , Ratos , Ratos Sprague-Dawley , Túnica Média/fisiologia
8.
Phys Chem Chem Phys ; 19(20): 13379-13386, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28492687

RESUMO

Samia cynthia ricini (S. c. ricini) is one of the wild silkworms. Their silk fibroins have been paid attention as potentially valuable biomedical materials as well as Bombyx mori silk fibroins, but detailed information on the packing arrangement of the fibers is still not currently well understood at a molecular level. In this study, 34 mer model peptides, GGAGGGYGGDGG(A)12GGAGDGYGAG with different 13C labeled positions have been synthesized as a typical sequence of the primary structure of S. c. ricini silk fibroins made up of tandemly repeated sequences of polyalanine as the crystalline region and glycin-rich sequences as the non-crystalline region. The heterogeneous structure was obtained from the determination of the fraction of several conformations depending on the position of the Ala residue by 13C cross polarization/magic angle spinning NMR. The packing arrangement was studied by 13C dipolar assisted rotational resonance NMR and packing in a staggered arrangement rather than a rectangular arrangement of this peptide with an anti-parallel ß-sheet structure was clarified, which is in good agreement with our previous report on the packing arrangement of (Ala)7 with an anti-parallel ß-sheet structure.


Assuntos
Bombyx/metabolismo , Fibroínas/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Isótopos de Carbono/química , Marcação por Isótopo , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/síntese química , Estrutura Secundária de Proteína , Seda/química
9.
Biomed Mater ; 11(6): 065010, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27869107

RESUMO

Amyloid A (AA) amyloidosis can be induced by the administration of amyloid fibrils to animals under inflammatory conditions. Silk fibroin (SF) is a main component protein of bombic silk and has amyloid-like features. The amyloidogenesis of SF solution in mice has been previously reported. Recently, the biochemical properties of silk have attracted increasing attention, and research and development have been undertaken regarding applications other than as a clothing material. However, the risk of AA amyloidosis from exposure to SF-related products is unknown. In this study, we examined the amyloidogenesis of several SF-related products that vary in preparation method or route of injection in a mouse model of amyloidosis. The results revealed that amyloid deposits were rarely observed in mice exposed to SF solution or feed supplemented with SF powder. On the other hand, heavy amyloid deposits were observed in some mice implanted with SF non-woven fabric by abdominal operation. Congo red staining of SF solutions under polarized light and electron microscopy indicated that SF solution in this study had no amyloid-like structures. We found that SF-related products occasionally promote amyloidogenesis, but have a low potential for amyloidosis.


Assuntos
Amiloide/química , Amiloidose/etiologia , Fibroínas/efeitos adversos , Animais , Vermelho Congo/química , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos DBA , Pós , Proteína Amiloide A Sérica/química
11.
Biomacromolecules ; 12(11): 3910-6, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21955288

RESUMO

It is well established that by introducing the cell-adhesive sequence Arg-Gly-Asp (RGD) from fibronectin into Bombyx mori silk fibroin by covalent coupling or bioengineering techniques, excellent biomaterials have been developed with the modified silk fibroin. However, there is no report about the structure and dynamics of the RGD moiety in the silk fibroin. To clarify the origin of such a high cell adhesion character and to design new recombinant silk protein with higher cell adhesion ability, it is necessary to characterize the structure and dynamics of the RGD moiety introduced into silk fibroin. In this study, the structure and dynamics of the RGD moiety in a recombinant silk-like protein, SLPF(10), consisting of the repeated silk fibroin sequence (AGSGAG)(3) and the sequence ASTGRGDSPA including the RGD moiety, were studied using solution NMR. The (1)H, (15)N, and (13)C chemical shifts indicate that the RGD moiety, as well as the silk fibroin sequence, takes a random coil form with high mobility in aqueous solution. Next, a (13)C solid-state NMR study was performed on a (13)C selectively labeled model peptide, AGSGAG[3-(13)C]A(7)GSGAGAGSGGT[2-(13)C]G(19)R[1-(13)C]G(21)DSPAGGGAGAGSGAG. After formic acid treatment, an increase in the ß-sheet fraction for the AGSGAG sequence and peak narrowing of the residues around the RGD moiety were observed in the dry state. The latter indicates a decrease in the chemical shift distribution although the RGD moiety is still in random coil. A decrease in the peak intensities of the RGD moiety in the swollen state after immersing it in distilled water was observed, indicating high mobility of the RGD sequence in the peptide in the swollen state. Thus, the random coil state of the RGD moiety in the recombinant silk-like protein is maintained in aqueous solution and also in both dry and swollen state. This is similar to the case of the RGD moiety in fibronectin. The presence of the linker ASTG at the N-terminus and SPAGG at the C-terminus seems important to maintain the random coil form and the flexible state of the RGD sequence in order to permit access for binding to various integrins.


Assuntos
Fibronectinas/química , Peptídeos/química , Seda/química , Células 3T3 , Sequência de Aminoácidos , Animais , Adesão Celular , Células Cultivadas , Proteínas Imobilizadas , Espectroscopia de Ressonância Magnética , Camundongos , Dados de Sequência Molecular , Osteoblastos , Ligação Proteica , Estrutura Secundária de Proteína
12.
J Vasc Surg ; 51(1): 155-64, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19954921

RESUMO

OBJECTIVE: There is an increasing need for vascular grafts in the field of surgical revascularization. However, smaller vascular grafts made from synthetic biomaterials, particularly those <5 mm in diameter, are associated with a high incidence of thrombosis. Fibroin is a biodegradable protein derived from silk. Silk fibroin from Bombyx mori provides an antithrombotic surface and serves as a scaffold for various cell types in tissue engineering. We evaluated the potential of fibroin to generate a vascular prosthesis for small arteries. METHODS: A small vessel with three layers was woven from silk fibroin thread. These fibroin-based grafts (1.5 mm diameter, 10 mm length) were implanted into the abdominal aorta of 10- to 14-week-old male Sprague-Dawley rats by end-to-end anastomosis. Polytetrafluoroethylene (PTFE)-based grafts were used as the control. To investigate the origin of the cells in the neointima and media, bone marrow transplantation was performed from green fluorescent protein (GFP) rats to wild-type rats. RESULTS: The patency of fibroin grafts at 1 year after implantation was significantly higher than that of PTFE grafts (85.1% vs 30%, P < .01). Endothelial cells and smooth muscle cells (SMCs) migrated into the fibroin graft early after implantation and became organized into endothelial and medial layers, as determined by anti-CD31 and anti-alpha-smooth muscle actin immunostaining. The total number of SMCs increased 1.6-fold from 1 month to 3 months. Vasa vasorum also formed in the adventitia. Sirius red staining of the fibroin grafts revealed that the content of collagen significantly increased at 1 year after implantation, with a decrease in fibroin content. GFP-positive cells contributed to organization of a smooth muscle layer. CONCLUSIONS: Small-diameter fibroin-based vascular grafts have excellent long-term patency. Bone marrow-derived cells contribute to vascular remodeling after graft implantation. Fibroin might be a promising material to engineer vascular prostheses for small arteries.


Assuntos
Implantes Absorvíveis , Aorta Abdominal/cirurgia , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Fibroínas , Grau de Desobstrução Vascular , Actinas/metabolismo , Animais , Aorta Abdominal/diagnóstico por imagem , Aorta Abdominal/metabolismo , Aortografia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Movimento Celular , Colágeno/metabolismo , Células Endoteliais/metabolismo , Proteínas de Fluorescência Verde/genética , Masculino , Teste de Materiais , Modelos Animais , Miócitos de Músculo Liso/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Politetrafluoretileno , Desenho de Prótese , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Fatores de Tempo , Ultrassonografia Doppler em Cores
13.
J Am Chem Soc ; 129(17): 5703-9, 2007 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-17417849

RESUMO

Lamellar structure of poly(Ala-Gly) or (AG)n in the solid was examined using 13C solid-state NMR and statistical mechanical approaches. Two doubly labeled versions, [1-13C]Gly14[1-13C]Ala15- and [1-13C]Gly18[1-13C]Ala19 of (AG)15 were examined by two-dimensional (2D) 13C spin diffusion NMR in the solid state. In addition five doubly labeled [15N,13C]-versions of the same peptide, (AG) 15 and 15 versions labeled [3-13C] in each of the successive Ala residues were utilized for REDOR and 13C CP/MAS NMR measurements, respectively. The observed spin diffusion NMR spectra were consistent with a structure containing a combination of distorted beta-turns with a large distribution of the torsion angles and antiparallel beta-sheets. The relative proportion of the distorted beta-turn form was evaluated by examination of 13C CP/MAS NMR spectra of [3-13C]Ala-(AG)15. In addition, REDOR determinations showed five kinds of atomic distances between doubly labeled 13C and 15N nuclei which were also interpreted in terms of a combination of beta-sheets and beta-turns. Our statistical mechanical analysis is in excellent agreement with our Ala Cbeta 13C CP/MAS NMR data strongly suggesting that (AG)15 has a lamellar structure.


Assuntos
Peptídeos/química , Seda/química , Indicadores e Reagentes , Espectroscopia de Ressonância Magnética , Conformação Molecular , Polímeros
14.
Biomacromolecules ; 7(2): 627-34, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16471940

RESUMO

The calcium-binding sites of calbindin D(9k) have a helix-loop-helix motif. In this study, the helix motifs were replaced by several Ala-Gly repeating regions designed on the basis of the primary sequences of several silk fibroins. The synthesized peptides were treated with several organic solvents to modify the secondary structure of the Ala-Gly repeating regions. The local structures of the Ala-Gly repeating regions, as well as the calcium-binding motif, D(9k)-loop (D(9k)L), were determined by (13)C CP/MAS NMR spectroscopy. In the four peptides containing D(9k)L synthesized, the poly(Ala) domains retain the ability to undergo a conformational transition from alpha-helical to beta-sheet in (A)(12)-D(9k)L despite the presence of the D(9k)L domain at the center of the peptide molecule, but the presence of this domain in the other model peptides synthesized has a marked effect on the conformation of the added silk-like domains. The results showed that the structures of the Ala-Gly repeating regions can be controlled by the choice of both the organic solvent and the amino acid sequence of the Ala-Gly repeating regions without disrupting the secondary structure of D(9k)L suggesting that it may retain its ability to bind calcium ions.


Assuntos
Cálcio/química , Peptídeos/química , Conformação Proteica , Proteína G de Ligação ao Cálcio S100/química , Sítios de Ligação , Calbindinas , Isótopos de Carbono , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Peptídeos/síntese química , Estrutura Secundária de Proteína , Padrões de Referência , Sensibilidade e Especificidade
15.
Biomacromolecules ; 6(6): 3220-6, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16283749

RESUMO

To obtain detailed structural information for spider dragline spidroin (MaSp1), we prepared three versions of the consensus peptide GGLGGQGAGAAAAAAGGAGQGGYGGLGSQGAGR labeled with 13C at six different sites. The 13C CP/MAS NMR spectra were observed after treating the peptides with different reagents known to alter silk protein conformations. The conformation-dependent 13C NMR chemical shifts and peak deconvolution were used to determine the local structure and the fractional compositions of the conformations, respectively. After trifluoroacetic acid (solvent)/diethyl ether (coagulant) treatment, the N-terminal region of poly-Ala (PLA) sequence, Ala8 and Ala10, adopted predominantly the alpha-helix with a substantial amount of beta-sheet. The central region, Ala15, Ala18, and Leu26, and C-terminal region, Ala31, of the peptide were dominated by either 3(1)-helix or alpha-helix. There was no indication of beta-sheet, although peak broadening indicates that the torsion angle distribution is relatively large. After 9 M LiBr/dialysis treatment, three kinds of conformation, beta-sheet, random coil, and 3(1)-helix, appeared, in almost equal amounts of beta-sheet and random coil conformations for Ala8 and Ala10 residues and distorted 3(1)-helix at the central region of the peptide. In contrast, after formic acid/methanol and 8 M urea/acetonitrile treatments, all of the local structure tends to beta-sheet, although small amounts of random coil are also observed. The peak pattern of the Ala Cbeta carbon after 8 M urea/acetonitrile treatment is similar to the corresponding patterns of silk fiber from Bombyx mori and Samia cynthia ricini. We also synthesized a longer 13C-labeled peptide containing two PLA blocks and three Gly-rich blocks. After 8 M urea/acetonitrile treatment, the conformation pattern was closely similar to that of the shorter peptide.


Assuntos
Fibroínas/química , Proteínas de Insetos/química , Espectroscopia de Ressonância Magnética/métodos , Peptídeos/química , Seda/química , Acetonitrilas/química , Alanina/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Materiais Biocompatíveis/química , Carbono/química , Radioisótopos de Carbono/farmacologia , Glicina/química , Leucina/química , Luz , Substâncias Macromoleculares/química , Metanol/química , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Solventes/química , Aranhas , Ácido Trifluoracético/farmacologia , Ureia/farmacologia
16.
Protein Sci ; 14(10): 2654-7, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16195552

RESUMO

13C high-resolution solid-state NMR coupled with selective 13C isotope-labeling of different Ala one methyl carbons was used to clarify the structure of (AG)15 peptide in the silk II structure as a model for the crystalline domain of Bombyx mori silk fiber. At the inner part of the peptide, the fraction of the peak at 16.6 ppm of the Ala Cbeta resonance assigned to beta-turn structure increased at 11th and 19th positions. These data indicate the appearance of the most probable lamellar structure having a turn structure at these two positions, although the position of turn was distributed along the chain.


Assuntos
Alanina/química , Bombyx/química , Glicina/química , Proteínas de Insetos/química , Modelos Moleculares , Peptídeos/química , Seda/química , Animais , Isótopos de Carbono/química , Ressonância Magnética Nuclear Biomolecular/métodos , Estrutura Secundária de Proteína
17.
J Am Chem Soc ; 125(24): 7230-7, 2003 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-12797796

RESUMO

Fibrous proteins unlike globular proteins, contain repetitive amino acid sequences, giving rise to very regular secondary protein structures. Silk fibroin from a wild silkworm, Samia cynthia ricini, consists of about 100 repeats of alternating polyalanine (poly-Ala) regions of 12-13 residues in length and Gly-rich regions. In this paper, the precise structure of the model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical repeated sequence of the silk fibroin, was determined using a combination of three kinds of solid-state NMR studies; a quantitative use of (13)C CP/MAS NMR chemical shift with conformation-dependent (13)C chemical shift contour plots, 2D spin diffusion (13)C solid-state NMR under off magic angle spinning and rotational echo double resonance. The structure of the model peptide corresponding to the silk fibroin structure before spinning was determined. The torsion angles of the central Ala residue, Ala(19), in the poly-Ala region were determined to be (phi, psi) = (-59 degrees, -48 degrees ) which are values typically associated with alpha-helical structures. However, the torsion angles of the Gly(25) residue adjacent to the C-terminal side of the poly-Ala chain were determined to be (phi, psi) = (-66 degrees, -22 degrees ) and those of Gly(12) and Ala(13) residues at the N-terminal of the poly-Ala chain to be (phi, psi) = (-70 degrees, -30 degrees ). In addition, REDOR experiments indicate that the torsion angles of the two C-terminal Ala residues, Ala(23) and Ala(24), are (phi, psi) = (-66 degrees, -22 degrees ) and those of N-terminal two Ala residues, Ala(13) and Ala(14) are (phi, psi) = (-70 degrees, -30 degrees ). Thus, the local structure of N-terminal and C-terminal residues, and also the neighboring residues of alpha-helical poly-Ala chain in the model peptide is a more strongly wound structure than found in typical alpha-helix structures.


Assuntos
Fibroínas/química , Mariposas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos/química , Sequência de Aminoácidos , Animais , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
18.
Protein Sci ; 12(4): 666-71, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12649423

RESUMO

There are many kinds of silks from silkworms and spiders with different structures and properties, and thus, silks are suitable to study the structure-property relationship of fibrous proteins. Silk fibroin from a wild silkworm, Samia cynthia ricini, mainly consists of the repeated similar sequences by about 100 times where there are alternative appearances of the polyalanine (Ala)(12-13) region and the Gly-rich region. In this paper, a sequential model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical sequence of the silk fibroin, was synthesized, and the atomic-level conformations of Gly residues at the N- and C-terminal ends of the polyalanine region were determined as well as that of the central Ala residue using (13)C 2D spin diffusion solid-state nuclear magnetic resonance (NMR) under off-magic angle spinning. In the model peptide with alpha-helical conformation, the torsion angle of the central Ala residue, the 19th Ala, was determined to be (phi, psi) = (-60 degrees, -50 degrees ), which was a typical alpha-helical structure, but the torsion angles of two Gly residues, the 12th and 25th Gly residues, which are located at the N- and C-terminal ends of the polyalanine region, were determined to be (phi, psi) = (-70 degrees, -30 degrees ) and (phi, psi) = (-70 degrees, -20 degrees ), respectively. Thus, it was observed that the turns at both ends of polyalanine with alpha-helix conformation in the model peptide are tightly wound.


Assuntos
Bombyx/química , Proteínas de Insetos/química , Peptídeos/química , Alanina/metabolismo , Animais , Glicina/metabolismo , Espectroscopia de Ressonância Magnética , Seda
19.
Protein Sci ; 11(8): 1873-7, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12142441

RESUMO

Bombyx mori silk fibroin is a fibrous protein whose fiber is extremely strong and tough, although it is produced by the silkworm at room temperature and from an aqueous solution. The primary structure is mainly Ala-Gly alternative copolypeptide, but Gly-Ala-Ala-Ser units appear frequently and periodically. Thus, this study aims at elucidating the role of such Gly-Ala-Ala-Ser units on the secondary structure. The sequential model peptides containing Gly-Ala-Ala-Ser units selected from the primary structure of B. mori silk fibroin were synthesized, and their secondary structure was studied with (13)C CP/MAS NMR and wide-angle X-ray scattering. The (13)C isotope labeling of the peptides and the (13)C conformation-dependent chemical shifts were used for the purpose. The Ala-Ala units take antiparallel beta-sheet structure locally, and the introduction of one Ala-Ala unit in (Ala-Gly)(15) chain promotes dramatical structural changes from silk I (repeated beta-turn type II structure) to silk II (antiparallel beta-sheet structure). Thus, the presence of Ala-Ala units in B. mori silk fibroin chain will be one of the inducing factors of the structural transition for silk fiber formation. The role of Tyr residue in the peptide chain was also studied and clarified to induce "locally nonordered structure."


Assuntos
Bombyx/química , Fibroínas/química , Proteínas de Insetos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Sequência de Aminoácidos , Aminoácidos/química , Animais , Isótopos de Carbono/química , DNA/química , Dados de Sequência Molecular , Peptídeos/síntese química , Estrutura Secundária de Proteína , Sequências Repetitivas de Ácido Nucleico , Espalhamento de Radiação , Seda , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA