Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 35(1): br1, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910204

RESUMO

Fibroblasts migrate discontinuously by generating transient leading-edge protrusions and irregular, abrupt retractions of a narrow trailing edge. In contrast, keratinocytes migrate persistently and directionally via a single, stable, broad protrusion paired with a stable trailing-edge. The Rho GTPases Rac1, Cdc42 and RhoA are key regulators of cell protrusions and retractions. However, how these molecules mediate cell-type specific migration modes is still poorly understood. In fibroblasts, all three Rho proteins are active at the leading edge, suggesting short-range coordination of protrusive Rac1 and Cdc42 signals with RhoA retraction signals. Here, we show that Cdc42 was surprisingly active in the trailing-edge of migrating keratinocytes. Elevated Cdc42 activity colocalized with the effectors MRCK and N-WASP suggesting that Cdc42 controls both myosin activation and actin polymerization in the back. Indeed, Cdc42 was required to maintain the highly dynamic contractile acto-myosin retrograde flow at the trailing edge of keratinocytes, and its depletion induced ectopic protrusions in the back, leading to decreased migration directionality. These findings suggest that Cdc42 is required to stabilize the dynamic cytoskeletal polarization in keratinocytes, to enable persistent, directional migration.


Assuntos
Movimento Celular , Queratinócitos , Proteína cdc42 de Ligação ao GTP , Proteínas rho de Ligação ao GTP , Proteína cdc42 de Ligação ao GTP/metabolismo , Fibroblastos/metabolismo , Queratinócitos/fisiologia , Miosinas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Humanos
2.
Chembiochem ; 23(4): e202100582, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34897929

RESUMO

Cells process information via signal networks that typically involve multiple components which are interconnected by feedback loops. The combination of acute optogenetic perturbations and microscopy-based fluorescent response readouts enables the direct investigation of causal links in such networks. However, due to overlaps in spectra of photosensitive and fluorescent proteins, current approaches that combine these methods are limited. Here, we present an improved chemo-optogenetic approach that is based on switch-like perturbations induced by a single, local pulse of UV light. We show that this approach can be combined with parallel monitoring of multiple fluorescent readouts to directly uncover relations between signal network components. We present the application of this technique to directly investigate feedback-controlled regulation in the cell contraction signal network that includes GEF-H1, Rho and Myosin, and functional interactions of this network with tumor relevant RhoA G17 mutants.


Assuntos
Miosinas/genética , Optogenética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteína rhoA de Ligação ao GTP/genética , Linhagem Celular Tumoral , Humanos , Mutação , Raios Ultravioleta
3.
Cell Rep ; 37(8): 110056, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818551

RESUMO

Statins are among the most commonly prescribed drugs, and around every fourth person above the age of 40 is on statin medication. Therefore, it is of utmost clinical importance to understand the effect of statins on cancer cell plasticity and its consequences to not only patients with cancer but also patients who are on statins. Here, we find that statins induce a partial epithelial-to-mesenchymal transition (EMT) phenotype in cancer cells of solid tumors. Using a comprehensive STRING network analysis of transcriptome, proteome, and phosphoproteome data combined with multiple mechanistic in vitro and functional in vivo analyses, we demonstrate that statins reduce cellular plasticity by enforcing a mesenchymal-like cell state that increases metastatic seeding ability on one side but reduces the formation of (secondary) tumors on the other due to heterogeneous treatment responses. Taken together, we provide a thorough mechanistic overview of the consequences of statin use for each step of cancer development, progression, and metastasis.


Assuntos
Plasticidade Celular/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia
4.
J Cell Biol ; 216(12): 4271-4285, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29055010

RESUMO

Rho GTPase-based signaling networks control cellular dynamics by coordinating protrusions and retractions in space and time. Here, we reveal a signaling network that generates pulses and propagating waves of cell contractions. These dynamic patterns emerge via self-organization from an activator-inhibitor network, in which the small GTPase Rho amplifies its activity by recruiting its activator, the guanine nucleotide exchange factor GEF-H1. Rho also inhibits itself by local recruitment of actomyosin and the associated RhoGAP Myo9b. This network structure enables spontaneous, self-limiting patterns of subcellular contractility that can explore mechanical cues in the extracellular environment. Indeed, actomyosin pulse frequency in cells is altered by matrix elasticity, showing that coupling of contractility pulses to environmental deformations modulates network dynamics. Thus, our study reveals a mechanism that integrates intracellular biochemical and extracellular mechanical signals into subcellular activity patterns to control cellular contractility dynamics.


Assuntos
Citoesqueleto de Actina/metabolismo , Mecanotransdução Celular , Microtúbulos/metabolismo , Miosinas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actomiosina/genética , Actomiosina/metabolismo , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Células HeLa , Humanos , Microtúbulos/ultraestrutura , Miosinas/genética , Osteoblastos , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas rho de Ligação ao GTP/genética
5.
PLoS One ; 10(9): e0137043, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26331477

RESUMO

BACKGROUND: Glomerular podocytes are highly differentiated cells that are key components of the kidney filtration units. The podocyte cytoskeleton builds the basis for the dynamic podocyte cytoarchitecture and plays a central role for proper podocyte function. Recent studies implicate that immunosuppressive agents including the mTOR-inhibitor everolimus have a protective role directly on the stability of the podocyte actin cytoskeleton. In contrast, a potential stabilization of microtubules by everolimus has not been studied so far. METHODS: To elucidate mechanisms underlying mTOR-inhibitor mediated cytoskeletal rearrangements, we carried out microarray gene expression studies to identify target genes and corresponding pathways in response to everolimus. We analyzed the effect of everolimus in a puromycin aminonucleoside experimental in vitro model of podocyte injury. RESULTS: Upon treatment with puromycin aminonucleoside, microarray analysis revealed gene clusters involved in cytoskeletal reorganization, cell adhesion, migration and extracellular matrix composition to be affected. Everolimus was capable of protecting podocytes from injury, both on transcriptional and protein level. Rescued genes included tubulin beta 2B class IIb (TUBB2B) and doublecortin domain containing 2 (DCDC2), both involved in microtubule structure formation in neuronal cells but not identified in podocytes so far. Validating gene expression data, Western-blot analysis in cultured podocytes demonstrated an increase of TUBB2B and DCDC2 protein after everolimus treatment, and immunohistochemistry in healthy control kidneys confirmed a podocyte-specific expression. Interestingly, Tubb2bbrdp/brdp mice revealed a delay in glomerular podocyte development as showed by podocyte-specific markers Wilm's tumour 1, Podocin, Nephrin and Synaptopodin. CONCLUSIONS: Taken together, our study suggests that off-target, non-immune mediated effects of the mTOR-inhibitor everolimus on the podocyte cytoskeleton might involve regulation of microtubules, revealing a potential novel role of TUBB2B and DCDC2 in glomerular podocyte development.


Assuntos
Everolimo/farmacologia , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Tubulina (Proteína)/genética , Animais , Adesão Celular , Linhagem Celular Transformada , Humanos , Rim/metabolismo , Camundongos , Camundongos Mutantes , Microtúbulos/metabolismo , Podócitos/metabolismo , Transcriptoma
6.
J Cell Sci ; 127(Pt 7): 1379-93, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24481812

RESUMO

The formin FHOD1 (formin homology 2 domain containing protein 1) can act as a capping and bundling protein in vitro. In cells, active FHOD1 stimulates the formation of ventral stress fibers. However, the cellular mechanisms by which this phenotype is produced and the physiological relevance of FHOD1 function are not currently understood. Here, we first show that FHOD1 controls the formation of two distinct stress fiber precursors differentially. On the one hand, it inhibits dorsal fiber growth, which requires the polymerization of parallel bundles of long actin filaments. On the other hand, it stimulates transverse arcs that are formed by the fusion of short antiparallel actin filaments. This combined action is crucial for the maturation of stress fibers and their spatio-temporal organization, and a lack of FHOD1 function perturbs dynamic cell behavior during cell migration. Furthermore, we show that the GTPase-binding and formin homology 3 domains (GBD and FH3) are responsible for stress fiber association and colocalization with myosin. Surprisingly, a version of FHOD1 that lacks these domains nevertheless retains its full capacity to stimulate arc and ventral stress fiber formation. Based on our findings, we propose a mechanism in which FHOD1 promotes the formation of short actin filaments and transiently associates with transverse arcs, thus providing tight temporal and spatial control of the formation and turnover of transverse arcs into mature ventral stress fibers during dynamic cell behavior.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Fetais/metabolismo , Miosinas/metabolismo , Proteínas Nucleares/metabolismo , Fibras de Estresse/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Forminas , Humanos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Estrutura Terciária de Proteína
7.
J Immunol ; 182(6): 3522-9, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19265130

RESUMO

Rho GTPases are essential regulators of signaling networks emanating from many receptors involved in innate or adaptive immunity. The Rho family member RhoA controls cytoskeletal processes as well as the activity of transcription factors such as NF-kappaB, C/EBP, and serum response factor. The multifaceted host cell activation triggered by TLRs in response to soluble and particulate microbial structures includes rapid stimulation of RhoA activity. RhoA acts downstream of TLR2 in HEK-TLR2 and monocytic THP-1 cells, but the signaling pathway connecting TLR2 and RhoA is still unknown. It is also not clear if RhoA activation is dependent on a certain TLR adapter. Using lung epithelial cells, we demonstrate TLR2- and TLR3-triggered recruitment and activation of RhoA at receptor-proximal cellular compartments. RhoA activity was dependent on TLR-mediated stimulation of Src family kinases. Both Src family kinases and RhoA were required for NF-kappaB activation, whereas RhoA was dispensable for type I IFN generation. These results suggest that RhoA plays a role downstream of MyD88-dependent and -independent TLR signaling and acts as a molecular switch downstream of TLR-Src-initiated pathways.


Assuntos
NF-kappa B/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo , Animais , Linhagem Celular , Linhagem Celular Transformada , Linhagem Celular Tumoral , Ativação Enzimática/imunologia , Humanos , Ligantes , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/fisiologia , NF-kappa B/fisiologia , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/fisiologia , Receptor 3 Toll-Like/fisiologia , Quinases da Família src/fisiologia
8.
Trends Cell Biol ; 18(5): 210-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18394899

RESUMO

The Rho guanine nucleotide exchange factor GEF-H1 is uniquely regulated by microtubule binding and is crucial in coupling microtubule dynamics to Rho-GTPase activation in a variety of normal biological situations. Here, we review the roles of GEF-H1 in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, and cancer. GEF-H1 might also contribute to pathophysiological signaling involved in leukemias, and in cancers associated with mutated p53 tumor suppressor gene, epithelial and endothelial cell dysfunction, infectious disease, and cardiac hypertrophy. We suggest that GEF-H1 could be a novel therapeutic target in multiple human diseases.


Assuntos
Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Apresentação de Antígeno , Diferenciação Celular , Movimento Celular , Transformação Celular Neoplásica , Epitélio/patologia , Genes Supressores de Tumor , Humanos , Microtúbulos/metabolismo , Modelos Biológicos , Mutação , Neoplasias/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho
9.
J Biol Chem ; 280(7): 5676-81, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15579911

RESUMO

PTEN is a frequently mutated tumor suppressor in malignancies. Interestingly, some malignancies exhibit undetectable PTEN protein without mutations or loss of PTEN mRNA. The cause(s) for this reduction in PTEN is unknown. Cancer cells frequently exhibit loss of cadherin, beta-catenin, alpha-catenin and/or vinculin, key elements of adherens junctions. Here we show that F9 vinculin-null (vin(-/-)) cells lack PTEN protein despite normal PTEN mRNA levels. Their PTEN protein expression was restored by transfection with vinculin or by inhibition of PTEN degradation. F9 vin(-/-) cells express PTEN protein upon transfection with a vinculin fragment (amino acids 243-1066) that is capable of interacting with alpha-catenin but unable to target into focal adhesions. On the other hand, disruption of adherens junctions with an E-cadherin blocking antibody reduced PTEN protein to undetectable levels in wild-type F9 cells. PTEN protein levels were restored in F9 vin(-/-) cells upon transfection with an E-cadherin-alpha-catenin fusion protein, which targets into adherens junctions and interacts with beta-catenin in F9 vin(-/-) cells. beta-Catenin is known to interact with MAGI-2. MAGI-2 interaction with PTEN in the cell membrane is known to prevent PTEN protein degradation. Thus, MAGI-2 overexpression in F9 vin(-/-) cells restored PTEN protein levels. Moreover, expression of vinculin mutants that reinstated the disrupted interactions of beta-catenin with MAGI-2 in F9 vin(-/-) cells also restored PTEN protein levels. These studies indicate that PTEN protein levels are dependent on the maintenance of beta-catenin-MAGI-2 interaction, in which vinculin plays a critical role.


Assuntos
Junções Aderentes/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transativadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Vinculina/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Proteínas de Membrana/genética , Camundongos , Mutação/genética , PTEN Fosfo-Hidrolase , Monoéster Fosfórico Hidrolases/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Proteínas Supressoras de Tumor/genética , Vinculina/genética , alfa Catenina , beta Catenina
10.
Bioconjug Chem ; 13(3): 387-91, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12009924

RESUMO

The cyanine dyes Cy3 and Cy5 have proven valuable in numerous applications involving conjugation with proteins. Practical syntheses of lysine-selective, succinimidyl ester derivatives of these dyes have been published, and succinimidyl esters are commercially available. However, the published syntheses of cysteine-selective derivatives produce relatively low yields from expensive starting materials, or produce molecules with marginal water solubility for protein labeling. We report here facile syntheses (four steps, >50% overall yield) of iodoacetamide, sulfhydryl-reactive derivatives of the Cy3 and Cy5 fluorophores. These novel derivatives have good water solubility (>2.5 mM) and bear only one reactive side chain, reducing possible protein cross-linking encountered with previous derivatives.


Assuntos
Carbocianinas/síntese química , Corantes Fluorescentes/síntese química , Iodoacetamida/química , Carbocianinas/química , Corantes Fluorescentes/química , Iodoacetamida/metabolismo , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA