Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 151, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38812026

RESUMO

BACKGROUND: SMYD3 has been found implicated in cancer progression. Its overexpression correlates with cancer growth and invasion, especially in gastrointestinal tumors. SMYD3 transactivates multiple oncogenic mechanisms, favoring cancer development. Moreover, it was recently shown that SMYD3 is required for DNA restoration by promoting homologous recombination (HR) repair. METHODS: In cellulo and in vivo models were employed to investigate the role of SMYD3 in cancer chemoresistance. Analyses of SMYD3-KO cells, drug-resistant cancer cell lines, patients' residual gastric or rectal tumors that were resected after neoadjuvant therapy and mice models were performed. In addition, the novel SMYD3 covalent inhibitor EM127 was used to evaluate the impact of manipulating SMYD3 activity on the sensitization of cancer cell lines, tumorspheres and cancer murine models to chemotherapeutics (CHTs). RESULTS: Here we report that SMYD3 mediates cancer cell sensitivity to CHTs. Indeed, cancer cells lacking SMYD3 functions showed increased responsiveness to CHTs, while restoring its expression promoted chemoresistance. Specifically, SMYD3 is essential for the repair of CHT-induced double-strand breaks as it methylates the upstream sensor ATM and allows HR cascade propagation through CHK2 and p53 phosphorylation, thereby promoting cancer cell survival. SMYD3 inhibition with the novel compound EM127 showed a synergistic effect with CHTs in colorectal, gastric, and breast cancer cells, tumorspheres, and preclinical colorectal cancer models. CONCLUSIONS: Overall, our results show that targeting SMYD3 may be an effective therapeutic strategy to overcome chemoresistance.


Assuntos
Dano ao DNA , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Histona-Lisina N-Metiltransferase , Humanos , Animais , Camundongos , Reparo do DNA/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Feminino
2.
Front Chem ; 12: 1378233, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38591056

RESUMO

Introduction: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer still lacking effective treatment options. Chemotherapy in combination with immunotherapy can restrict tumor progression and repolarize the tumor microenvironment towards an anti-tumor milieu, improving clinical outcome in TNBC patients. The chemotherapeutic drug paclitaxel has been shown to induce immunogenic cell death (ICD), whereas inhibitors of the indoleamine 2,3- dioxygenase 1 (IDO1) enzyme, whose expression is shared in immune regulatory and tumor cells, have been revealed to enhance the anti-tumor immune response. However, poor bioavailability and pharmacokinetics, off-target effects and hurdles in achieving therapeutic drug concentrations at the target tissue often limit the effectiveness of combination therapies. Methods: This work describes the development of novel biomimetic and carrier-free nanobinders (NBs) loaded with both paclitaxel and the IDO1 inhibitor NLG919 in the form of bioresponsive and biomimetic prodrugs. A fine tuning of the preparation conditions allowed to identify NB@5 as the most suitable nanoformulation in terms of reproducibility, stability and in vitro effectiveness. Results and discussion: Our data show that NB@5 effectively binds to HSA in cell-free experiments, demonstrating its protective role in the controlled release of drugs and suggesting the potential to exploit the protein as the endogenous vehicle for targeted delivery to the tumor site. Our study successfully proves that the drugs encapsulated within the NBs are preferentially released under the altered redox conditions commonly found in the tumor microenvironment, thereby inducing cell death, promoting ICD, and inhibiting IDO1.

3.
Bioorg Med Chem ; 91: 117419, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487339

RESUMO

Multi-target drug discovery is one of the most active fields in the search for new drugs against Alzheimer's disease (AD). This is because the complexity of AD pathological network might be adequately tackled by multi-target-directed ligands (MTDLs) aimed at modulating simultaneously multiple targets of such a network. In a continuation of our efforts to develop MTDLs for AD, we have been focusing on the molecular hybridization of the acetylcholinesterase inhibitor tacrine with the aim of expanding its anti-AD profile. Herein, we manipulated the structure of a previously developed tacrine-quinone hybrid (1). We designed and synthesized a novel set of MTDLs (2-6) by replacing the naphthoquinone scaffold of 1 with that of 2,5,8-quinolinetrione. The most interesting hybrid 3 inhibited cholinesterase enzymes at nanomolar concentrations. In addition, 3 exerted antioxidant effects in menadione-induced oxidative stress of SH-SY5Y cells. Importantly, 3 also showed low hepatotoxicity and good anti-amyloid aggregation properties. Remarkably, we uncovered the potential of the quinolinetrione scaffold, as a novel anti-amyloid aggregation and antioxidant motif to be used in further anti-AD MTDL drug discovery endeavors.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Tacrina/farmacologia , Tacrina/química , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase , Ligantes , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Antioxidantes/farmacologia , Peptídeos beta-Amiloides
4.
Eur J Med Chem ; 243: 114683, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36116234

RESUMO

Recent findings support the hypothesis that inhibition of SMYD3 methyltransferase may be a therapeutic avenue for some of the deadliest cancer types. Herein, active site-selective covalent SMYD3 inhibitors were designed by introducing an appropriate reactive cysteine trap into reversible first-generation SMYD3 inhibitors. The 4-aminopiperidine derivative EM127 (11C) bearing a 2-chloroethanoyl group as reactive warhead showed selectivity for Cys186, located in the substrate/histone binding pocket. Selectivity towards Cys186 was retained even at high inhibitor/enzyme ratio, as shown by mass spectrometry. The mode of interaction with the SMYD3 substrate/histone binding pocket was revealed by crystallographic studies. In enzymatic assays, 11C showed a stronger SMYD3 inhibitory effect compared to the reference inhibitor EPZ031686. Remarkably, 11C attenuated the proliferation of MDA-MB-231 breast cancer cell line at the same low micromolar range of concentrations that reduced SMYD3 mediated ERK signaling in HCT116 colorectal cancer and MDA-MB-231 breast cancer cells. Furthermore, 11C (5 µM) strongly decreased the steady-state mRNA levels of genes important for tumor biology such as cyclin dependent kinase 2, c-MET, N-cadherin and fibronectin 1, all known to be regulated, at least in part, by SMYD3. Thus, 11C is as a first example of second generation SMYD3 inhibitors; this agent represents a covalent and a site specific SMYD3 binder capable of potent and prolonged attenuation of methyltransferase activity.


Assuntos
Neoplasias da Mama , Histona-Lisina N-Metiltransferase , Humanos , Feminino , Histona-Lisina N-Metiltransferase/metabolismo , Histonas , Linhagem Celular Tumoral
5.
Cancers (Basel) ; 14(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35205627

RESUMO

Exploiting the tumor environment features (EPR effect, elevated glutathione, reactive oxygen species levels) might allow attaining a selective and responsive carrier capable of improving the therapeutic outcome. To this purpose, the in situ covalent binding of drugs and nanoparticles to circulating human serum albumin (HSA) might represent a pioneering approach to achieve an effective strategy. This study describes the synthesis, in vitro and in vivo evaluation of bioresponsive HSA-binding nanoparticles (MAL-PTX2S@Pba), co-delivering two different paclitaxel (PTX) prodrugs and the photosensitizer pheophorbide a (Pba), for the combined photo- and chemo-treatment of breast cancer. Stable and reproducible MAL-PTX2S@Pba nanoparticles with an average diameter of 82 nm and a PTX/Pba molar ratio of 2.5 were obtained by nanoprecipitation. The in vitro 2D combination experiments revealed that MAL-PTX2S@Pba treatment induces a strong inhibition of cell viability of MDA-MB-231, MCF7 and 4T1 cell lines, whereas 3D experiments displayed different trends: while MAL-PTX2S@Pba effectiveness was confirmed against MDA-MB-231 spheroids, the 4T1 model exhibited marked resistance. Lastly, despite using a low PTX-PDT regimen (e.g., 8.16 mg/Kg PTX and 2.34 mg/Kg Pba), our formulation showed to foster primary tumor reduction and curb lung metastases growth in 4T1 tumor-bearing mice, thus setting the basis for further preclinical validations.

6.
Molecules ; 26(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669839

RESUMO

Despite Alzheimer's disease (AD) incidence being projected to increase worldwide, the drugs currently on the market can only mitigate symptoms. Considering the failures of the classical paradigm "one target-one drug-one disease" in delivering effective medications for AD, polypharmacology appears to be a most viable therapeutic strategy. Polypharmacology can involve combinations of multiple drugs and/or single chemical entities modulating multiple targets. Taking inspiration from an ongoing clinical trial, this work aims to convert a promising cromolyn-ibuprofen drug combination into single-molecule "codrugs." Such codrugs should be able to similarly modulate neuroinflammatory and amyloid pathways, while showing peculiar pros and cons. By exploiting a linking strategy, we designed and synthesized a small set of cromolyn-ibuprofen conjugates (4-6). Preliminary plasma stability and neurotoxicity assays allowed us to select diamide 5 and ethanolamide 6 as promising compounds for further studies. We investigated their immunomodulatory profile in immortalized microglia cells, in vitro anti-aggregating activity towards Aß42-amyloid self-aggregation, and their cellular neuroprotective effect against Aß42-induced neurotoxicity. The fact that 6 effectively reduced Aß-induced neuronal death, prompted its investigation into an in vivo model. Notably, 6 was demonstrated to significantly increase the longevity of Aß42-expressing Drosophila and to improve fly locomotor performance.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cromolina Sódica/uso terapêutico , Ibuprofeno/uso terapêutico , Polifarmacologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromolina Sódica/síntese química , Cromolina Sódica/química , Cromolina Sódica/farmacologia , Drosophila/efeitos dos fármacos , Desenho de Fármacos , Endocitose/efeitos dos fármacos , Ibuprofeno/síntese química , Ibuprofeno/química , Ibuprofeno/farmacologia , Imunomodulação/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Agregados Proteicos/efeitos dos fármacos , Ratos Wistar
7.
Chembiochem ; 22(9): 1597-1608, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33400854

RESUMO

SMYD3 is a multifunctional epigenetic enzyme with lysine methyltransferase activity and various interaction partners. It is implicated in the pathophysiology of cancers but with an unclear mechanism. To discover tool compounds for clarifying its biochemistry and potential as a therapeutic target, a set of drug-like compounds was screened in a biosensor-based competition assay. Diperodon was identified as an allosteric ligand; its R and S enantiomers were isolated, and their affinities to SMYD3 were determined (KD =42 and 84 µM, respectively). Co-crystallization revealed that both enantiomers bind to a previously unidentified allosteric site in the C-terminal protein binding domain, consistent with its weak inhibitory effect. No competition between diperodon and HSP90 (a known SMYD3 interaction partner) was observed although SMYD3-HSP90 binding was confirmed (KD =13 µM). Diperodon clearly represents a novel starting point for the design of tool compounds interacting with a druggable allosteric site, suitable for the exploration of noncatalytic SMYD3 functions and therapeutics with new mechanisms of action.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Sítio Alostérico , Sítios de Ligação , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Proteínas de Choque Térmico HSP90/química , Histona-Lisina N-Metiltransferase/química , Humanos , Cinética , Ligantes , Simulação de Dinâmica Molecular , Piperidinas/química , Piperidinas/metabolismo , Ligação Proteica , Estereoisomerismo
8.
Molecules ; 25(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992652

RESUMO

Ovarian cancer remains the leading cause of mortality among gynecological tumors. Estrogen receptor beta (ERß) expression has been suggested to act as a tumor suppressor in epithelial ovarian cancer by reducing both tumor growth and metastasis. ERß expression abnormalities represent a critical step in the development and progression of ovarian cancer: for these reasons, its re-expression by genetic engineering, as well as the use of targeted ERß therapies, still constitute an important therapeutic approach. 3-{[2-chloro-1-(4-chlorobenzyl)-5-methoxy-6-methyl-1H-indol-3-yl]methylene}-5-hydroxy-6-methyl-1,3-dihydro-2H-indol-2-one, referred to here as compound 3, has been shown to have cytostatic as well cytotoxic effects on various hormone-dependent cancer cell lines. However, the mechanism of its anti-carcinogenic activity is not well understood. Here, we offer a possible explanation of such an effect in the human ovarian cancer cell line IGROV1. Chromatin binding protein assay and liquid chromatography mass spectrometry were exploited to localize and quantify compound 3 in cells. Molecular docking was used to prove compound 3 binding to ERß. Mass spectrometry-based approaches were used to analyze histone post-translational modifications. Finally, gene expression analyses revealed a set of genes regulated by the ERß/3 complex, namely CCND1, MYC, CDKN2A, and ESR2, providing possible molecular mechanisms that underline the observed antiproliferative effects.


Assuntos
Receptor beta de Estrogênio , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indóis , Simulação de Acoplamento Molecular , Proteínas de Neoplasias , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/química , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Indóis/química , Indóis/farmacologia , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia
9.
Eur J Med Chem ; 181: 111550, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31376562

RESUMO

Concerned by the devastating effects of Alzheimer's disease, and the lack of effective drugs, we have carried out the design of a series of tacrine-phenolic heterodimers in order to tackle the multifactorial nature of the disease. Hybridization of both pharmacophores involved the modification of the nature (imino, amino, ether) and the length of the tether, together with the type (hydroxy, methoxy, benzyloxy), number and position of the substituents on the aromatic residue. Title compounds were found to be strong and selective inhibitors of human BuChE (from low nanomolar to subnanomolar range), an enzyme that becomes crucial in the more advanced stages of the disease. The lead compound, bearing an ether-type tether, had an IC50 value of 0.52 nM against human BuChE, and a selectivity index of 323, with an 85-fold increase of activity compared to parent tacrine; key interactions were analysed using molecular modelling. Moreover, it also inhibited the self-aggregation of Aß42, lacking neurotoxicity up to 5 µM concentration, and showed neuroprotective activity in primary rat neurons in a serum and K+ deprivation model, widely employed for reproducing neuronal injury and senescence. Moreover, low hepatoxicity effects and complete stability under physiological conditions were found for that compound. So, overall, our lead compound can be considered as a promising multitarget-directed ligand against Alzheimer's disease, and a good candidate for developing new drugs.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antineoplásicos/farmacologia , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Fenóis/farmacologia , Tacrina/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Butirilcolinesterase/metabolismo , Proliferação de Células/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Dimerização , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Electrophorus , Cavalos , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Fenóis/síntese química , Fenóis/química , Relação Estrutura-Atividade , Tacrina/síntese química , Tacrina/química , Células Tumorais Cultivadas
10.
Biochemistry ; 58(35): 3634-3645, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31389685

RESUMO

SET and MYND domain-containing protein 3 (SMYD3) is a lysine methyltransferase that plays a central role in a variety of cancer diseases, exerting its pro-oncogenic activity by methylation of key proteins, of both nuclear and cytoplasmic nature. However, the role of SMYD3 in the initiation and progression of cancer is not yet fully understood and further biochemical characterization is required to support the discovery of therapeutics targeting this enzyme. We have therefore developed robust protocols for production, handling, and crystallization of SMYD3 and biophysical and biochemical assays for clarification of SMYD3 biochemistry and identification of useful lead compounds. Specifically, a time-resolved biosensor assay was developed for kinetic characterization of SMYD3 interactions. Functional differences in SMYD3 interactions with its natural small molecule ligands SAM and SAH were revealed, with SAM forming a very stable complex. A variety of peptides mimicking putative substrates of SMYD3 were explored in order to expose structural features important for recognition. The interaction between SMYD3 and some peptides was influenced by SAM. A nonradioactive SMYD3 activity assay using liquid chromatography-mass spectrometry (LC-MS) analysis explored substrate features of importance also for methylation. Methylation was notable only toward MAP kinase kinase kinase 2 (MAP3K2_K260)-mimicking peptides, although binary and tertiary complexes were detected also with other peptides. The analysis supported a random bi-bi mechanistic model for SMYD3 methyltransferase catalysis. Our work unveiled complexities in SMYD3 biochemistry and resulted in procedures suitable for further studies and identification of novel starting points for design of effective and specific leads for this potential oncology target.


Assuntos
Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Estabilidade Enzimática , Epigênese Genética/genética , Escherichia coli , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/isolamento & purificação , Humanos , Cinética , Ligantes , Conformação Proteica , Desdobramento de Proteína , Relação Estrutura-Atividade , Temperatura , Termodinâmica
11.
Eur J Med Chem ; 178: 243-258, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31185414

RESUMO

To address the multifactorial nature of Alzheimer's Disease (AD), a multi-target-directed ligand approach was herein developed. As a follow-up of our previous studies, a small library of newly designed 2-arylbenzofuran derivatives was evaluated towards cholinesterases and cannabinoid receptors. The two most promising compounds, 8 and 10, were then assessed for their neuroprotective activity and for their ability to modulate the microglial phenotype. Compound 8 emerged as able to fight AD from several directions: it restored the cholinergic system by inhibiting butyrylcholinesterase, showed neuroprotective activity against Aß1-42 oligomers, was a potent and selective CB2 ligand and had immunomodulatory effects, switching microglia from the pro-inflammatory M1 to the neuroprotective M2 phenotype. Derivative 10 was a potent CB2 inverse agonist with promising immunomodulatory properties and could be considered as a tool for investigating the role of CB2 receptors and for developing potential immunomodulating drugs addressing the endocannabinoid system.


Assuntos
Benzofuranos/farmacologia , Inibidores da Colinesterase/farmacologia , Fatores Imunológicos/farmacologia , Fármacos Neuroprotetores/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Animais , Benzofuranos/síntese química , Benzofuranos/química , Benzofuranos/metabolismo , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Células CHO , Domínio Catalítico , Linhagem Celular Tumoral , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Cricetulus , Desenho de Fármacos , Humanos , Fatores Imunológicos/síntese química , Fatores Imunológicos/química , Fatores Imunológicos/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Ligação Proteica , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
12.
Eur J Med Chem ; 168: 58-77, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30798053

RESUMO

Both cholinesterases (AChE and BChE) and kinases, such as GSK-3α/ß, are associated with the pathology of Alzheimer's disease. Two scaffolds, targeting AChE (tacrine) and GSK-3α/ß (valmerin) simultaneously, were assembled, using copper(I)-catalysed azide alkyne cycloaddition (CuAAC), to generate a new series of multifunctional ligands. A series of eight multi-target directed ligands (MTDLs) was synthesized and evaluated in vitro and in cell cultures. Molecular docking studies, together with the crystal structures of three MTDL/TcAChE complexes, with three tacrine-valmerin hybrids allowed designing an appropriate linker containing a 1,2,3-triazole moiety whose incorporation preserved, and even increased, the original inhibitory potencies of the two selected pharmacophores toward the two targets. Most of the new derivatives exhibited nanomolar affinity for both targets, and the most potent compound of the series displayed inhibitory potencies of 9.5 nM for human acetylcholinesterase (hAChE) and 7 nM for GSK-3α/ß. These novel dual MTDLs may serve as suitable leads for further development, since, in the micromolar range, they exhibited low cytotoxicity on a panel of representative human cell lines including the human neuroblastoma cell line SH-SY5Y. Moreover, these tacrine-valmerin hybrids displayed a good ability to penetrate the blood-brain barrier (BBB) without interacting with efflux pumps such as P-gp.


Assuntos
Acetilcolinesterase/metabolismo , Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Triazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cristalografia por Raios X , Cães , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
13.
Molecules ; 23(8)2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061534

RESUMO

Alzheimer's disease still represents an untreated multifaceted pathology, and drugs able to stop or reverse its progression are urgently needed. In this paper, a series of naturally inspired chalcone-based derivatives were designed as structural simplification of our previously reported benzofuran lead compound, aiming at targeting both acetyl (AChE)- and butyryl (BuChE) cholinesterases that, despite having been studied for years, still deserve considerable attention. In addition, the new compounds could also modulate different pathways involved in disease progression, due to the peculiar trans-α,ß-unsaturated ketone in the chalcone framework. All molecules presented in this study were evaluated for cholinesterase inhibition on the human enzymes and for antioxidant and neuroprotective activities on a SH-SY5Y cell line. The results proved that almost all the new compounds were low micromolar inhibitors, showing different selectivity depending on the appended substituent; some of them were also effective antioxidant and neuroprotective agents. In particular, compound 4, endowed with dual AChE/BuChE inhibitory activity, was able to decrease ROS formation and increase GSH levels, resulting in enhanced antioxidant endogenous defense. Moreover, this compound also proved to counteract the neurotoxicity elicited by Aß1⁻42 oligomers, showing a promising neuroprotective potential.


Assuntos
Acetilcolinesterase/química , Antioxidantes/síntese química , Butirilcolinesterase/química , Chalconas/síntese química , Inibidores da Colinesterase/síntese química , Fármacos Neuroprotetores/síntese química , Nootrópicos/síntese química , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/farmacologia , Antioxidantes/farmacologia , Butirilcolinesterase/genética , Butirilcolinesterase/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Chalconas/farmacologia , Inibidores da Colinesterase/farmacologia , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Glutationa/agonistas , Glutationa/metabolismo , Humanos , Simulação de Acoplamento Molecular , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
14.
J Food Sci ; 83(6): 1516-1521, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29786849

RESUMO

Numerous studies support the protective role of bioactive peptides against cardiovascular diseases. Cereals represent the primary source of carbohydrates, but they also contain substantial amounts of proteins, therefore representing a potential dietary source of bioactive peptides with nutraceutical activities. The analysis of wheat extracts purified by chromatographic techniques by means of HPLC-UV/nanoLC-nanoESI-QTOF allowed the identification of a signal of about 7 kDa which, following data base searches, was ascribed to a nonspecific lipid-transfer protein (nsLTP) type 2 from Triticum aestivum (sequence coverage of 92%). For the first time nsLTP2 biological activities have been investigated. In particular, in experiments with human umbilical vein endothelial cells (HUVEC), nsLTP2 displayed antioxidant and cytoprotective activities, being able to significantly decrease reactive oxygen species (ROS) levels and to reduce lactate dehydrogenase (LDH) release, generated following oxidative (hydrogen peroxide) and inflammatory (tumor necrosis factor α, interleukin-1ß, and lipopolysaccharide) stimulation. The obtained promising results suggest potential protective role of nsLTP2 in vascular diseases prevention. PRACTICAL APPLICATION: nsLTP 2 peptide is resistant to proteases throughout the gastrointestinal tract and exerts antioxidant and cytoprotective activities. These characteristics could be exploited in vascular diseases prevention.


Assuntos
Antioxidantes/farmacologia , Proteínas de Transporte/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Triticum/química , Antioxidantes/isolamento & purificação , Proteínas de Transporte/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Suplementos Nutricionais , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , L-Lactato Desidrogenase/metabolismo , Proteínas de Plantas/isolamento & purificação
15.
Eur J Med Chem ; 136: 259-269, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28499171

RESUMO

New α1-adrenoreceptor (α1-AR) antagonists related to prazosin and doxazosin were synthesized by replacing piperazine ring with (S)- or (R)-3-aminopiperidine. Binding studies indicated that the S configuration at the 3-C position of the piperidine ring is crucial for an optimal interaction of the compounds at all three α1-AR subtypes. Quinazolines 9 and 10, bearing a quinone ring on the lateral chain, exhibited also potent antiproliferative activity in LNCaP androgen-sensitive prostate cancer cell lines, higher than that of doxazosin. Compound 10 increased apoptosis, in terms of DNA fragmentation, without triggering cell necrosis. The prooxidant activity found in compound 10 may underlie its ability to inhibit cell proliferation in synergy with the effect mediated by α1-AR antagonism. Due to its better biological profile compared to doxazosin for LNCaP cell line, compound 10 might be a valuable lead compound for the design of new prostate antitumor agents.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Quinazolinas/farmacologia , Receptores Adrenérgicos alfa 1/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/síntese química , Antagonistas de Receptores Adrenérgicos alfa 1/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Estrutura Molecular , Neoplasias da Próstata/patologia , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
16.
Dalton Trans ; 45(4): 1546-53, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26687209

RESUMO

Alkynyl(triphenylphosphine)gold(i) complexes carrying variously substituted propargylic amines have been synthesized and fully characterized in solution and solid state. High levels of toxicity (i.e. micromolar range) were recognized for a series of cancer cell lines with particular emphasis on HT29, IGROV1, HL60 and I407. In particular the lead compound 3ab was identified as the most active compound in all cell lines (IC50: 1.7-7.9 µM).


Assuntos
Antineoplásicos/farmacologia , Compostos Organoáuricos/farmacologia , Alcinos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ouro/química , Humanos , Estrutura Molecular , Compostos Organoáuricos/síntese química , Compostos Organoáuricos/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
17.
Hepatology ; 60(6): 1851-60, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25048618

RESUMO

UNLABELLED: Beside the regulation of fluid distribution, human serum albumin (HSA) carries other activities, such as binding, transport, and detoxification of many molecules. In patients with cirrhosis, HSA exhibits posttranscriptional alterations that likely affect its functions. This study aimed at identifying the structural HSA alterations occurring in cirrhosis and determining their relationship with specific clinical complications and patient survival. One hundred sixty-eight patients with cirrhosis, 35 with stable conditions and 133 hospitalized for acute clinical complications, and 94 healthy controls were enrolled. Posttranscriptional HSA molecular changes were identified and quantified by using a high-performance liquid chromatography/electrospray ionization mass spectrometry technique. Clinical and biochemical parameters were also recorded and hospitalized patients were followed for up to 1 year. Seven HSA isoforms carrying one or more posttranscriptional changes were identified. Altered HSA isoforms were significantly more represented in patients than in healthy controls. Conversely, the native, unchanged HSA isoform was significantly reduced in cirrhosis. Native HSA and most altered isoforms correlated with both Child-Pugh and Model for End-Stage Liver Disease scores. In hospitalized patients, oxidized and N-terminal truncated isoforms were independently associated with ascites, renal impairment, and bacterial infection. Finally, the native HSA and cysteinylated/N-terminal truncated isoforms were predictors of 1-year survival, with greater prognostic accuracy than total serum albumin concentration. CONCLUSIONS: Extensive posttranscriptional changes of HSA, involving several molecular sites and increasing in parallel with disease severity, occur in patients with cirrhosis. Altered isoforms are independently associated with specific clinical complications, whereas the residual, native HSA isoform independently predicts patient survival. These findings support the concept of the "effective albumin concentration," which implies that the global HSA function is related not only to its serum concentration, but also to the preservation of its structural integrity.


Assuntos
Albuminas/metabolismo , Cirrose Hepática/metabolismo , Modificação Traducional de Proteínas , Adulto , Idoso , Estudos de Casos e Controles , Complicações do Diabetes/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Itália/epidemiologia , Cirrose Hepática/complicações , Cirrose Hepática/mortalidade , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas/metabolismo , Processamento Pós-Transcricional do RNA
18.
Biochim Biophys Acta ; 1821(10): 1334-40, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22814230

RESUMO

9-Hydroxystearic acid (9-HSA) belongs to the endogenous lipid peroxidation by-products that decrease in tumors, causing as a consequence the loss of one of the control mechanisms on cell division. It acts as a histone deacetylase (HDAC, E.C 3.5.1.98) inhibitor, and the interaction of the two enantiomers of 9-HSA with the catalytic site of the enzyme, investigated by using a molecular modelling approach, has been reported to be different. In this work we tested out this prediction by synthesizing the two enantiomers (R)-9-HSA (R-9) and (S)-9-HSA (S-9) starting from the natural source methyl dimorphecolate obtained from Dimorphotheca sinuata seeds and investigating their biological activity in HT29 cells. Both enantiomers inhibit the enzymatic activity of HDAC1, HDAC2 and HDAC3, R-9 being more active; R-9 and S-9 inhibitory effect induces an increase in histone H4 acetylation. We also demonstrate that the antiproliferative effect brought about by R-9 is more pronounced as well as we observe increase of p21 transcription and protein content, while the expression of cyclin D1 is decreased. Starting from these observations it can be hypothesized that the interaction of R-9 with HDAC1 induce conformational changes in the enzyme causing loss of its interaction with other proteins, like cyclin D1 itself.


Assuntos
Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Ácidos Esteáricos/farmacologia , Proliferação de Células/efeitos dos fármacos , Ciclina D1/análise , Inibidor de Quinase Dependente de Ciclina p21/análise , Células HT29 , Inibidores de Histona Desacetilases/química , Humanos , Conformação Proteica , Ácidos Esteáricos/química , Estereoisomerismo
19.
J Pharm Biomed Anal ; 53(2): 200-6, 2010 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-20427142

RESUMO

A common polymorphism at codon 72 of human TP53 gene determines a proline to arginine aminoacidic substitution within the proline-rich domain of p53 protein. The two resulting isoforms (p53P(72) and p53R(72)) are different from a biochemical and biological point of view and many reports suggest that they can modulate individual cancer susceptibility and overall survival. In the attempt to explain the observed biological differences, we characterized the two isoforms by mass spectrometry and circular dichroism (CD) to evaluate the possible alteration in the secondary structure of p53 introduced by this polymorphism. Recombinant human p53R(72) and p53P(72) were produced by using E. coli expression system then purified by chromatography (affinity chromatography and RP-HPLC), and the whole proteins identified by HPLC-ESI-IT and MALDI-TOF analysis. A bottom-up approach, using both MALDI-TOF and HPLC-ESI-QTOF analysis, was then adopted to obtain the sequence information on the two p53 isoforms. To this purpose, peptide maps were obtained by trypsin proteolysis on the two p53 isoforms. The two isoforms proteolytic digests were separated by LC and subsequent mass spectrometry analysis of both entire and fragmented peptides was performed. In particular, precursor peptide ions obtained by ESI were subjected to collision by the triple quadrupole and TOF separation, allowing us to determine the isoforms aminoacidic peptide sequence by peptide ladder sequencing. Because of the presence of arginine, a selective trypsin proteolytic cleavage at R(72), giving rise to two selective shorter peptides, occurred in p53R(72), but was missing in the case of p53P(72) trypsin digest, in which an uncleaved longer peptide was instead identified. Upon primary structure confirmation, the two p53 isoforms were studied by CD in order to investigate the experimental variables, which affect ordered secondary structure adoption. CD analysis indicated that the two isoforms are not structurally different, thus allowing us to exclude that the observed biological differences can be due to a different conformation of the two isoforms introduced by this polymorphism. Furthermore, these studies establish a mass spectrometry method to identify the two isoforms that can be useful for future interactome studies and cancer drug discovery.


Assuntos
Substituição de Aminoácidos , Dicroísmo Circular/métodos , Espectrometria de Massas/métodos , Mapeamento de Peptídeos/métodos , Isoformas de Proteínas/análise , Proteína Supressora de Tumor p53/análise , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Fragmentos de Peptídeos/análise
20.
Proteomics ; 9(24): 5437-45, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19834889

RESUMO

The goal of the present work is to establish a correlation between the degree of histone post-translational modifications and the effects caused by treatment of HT29 colon cancer cells with class I-selective (MS-275 and MC1855), class II-selective (MC1568), and non-selective (suberoylanilide hydroxamic acid (SAHA) histone deacetylase inhibitors (HDACi). This correlation could afford a mean to better understand the mechanism of action of new, more potent, and selective HDACi directly on the cells. To this end, LC coupled to MS was applied in studies of time and concentration-dependent treatment with HDACi in HT29 cells. The results were correlated to their potency of histone deacetylase inhibition and to their effects on the cell cycle. The results indicate that the four tested inhibitors show a different pattern of time- and concentration-dependent modification after treatment of HT29 cells. At the selected concentrations, they cause different histone hyperacetylation and different cell cycle effects. In particular, SAHA (non-selective HDACi) affected hyperacetylation of all histones and caused massive cell death. MC1855 (class I-selective HDACi, hydroxamate) proved to be more potent and less toxic (cell arrest in G2/M phase) than SAHA. MS-275 (class I-selective HDACi, benzamide) exhibited a higher degree of hyperacetylation of H4 and a lower degree of H2A, H2B, and H3 acetylation, causing a cell arrest in G0/G1 phase. On the contrary, MC1568 (class II-selective HDACi) produced only a modest hyperacetylation of H4, was ineffective on the other histones, and showed no effect on cell cycle in HT29 cells.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias do Colo/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Adenocarcinoma/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Neoplasias do Colo/tratamento farmacológico , Células HT29 , Humanos , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA