Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Steroid Biochem Mol Biol ; 223: 106137, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35690241

RESUMO

The remodeling of the cervix from a closed rigid structure to one that can open sufficiently for passage of a term infant is achieved by a complex series of molecular events that in large part are regulated by the steroid hormones progesterone and estrogen. Among hormonal influences, progesterone exerts a dominant role for most of pregnancy to initiate a loss of tissue strength yet maintain competence in a phase termed softening. Equally important are the molecular events that abrogate progesterone function in late pregnancy to allow a loss of tissue competence and strength during cervical ripening and dilation. In this review, we focus on current understanding by which progesterone receptor signaling for the majority of pregnancy followed by a loss/shift in progesterone receptor action at the end of pregnancy, collectively ensure cervical remodeling as necessary for successful parturition.


Assuntos
Colo do Útero , Progesterona , Maturidade Cervical , Colo do Útero/fisiologia , Estrogênios , Feminino , Humanos , Gravidez , Receptores de Progesterona
2.
Biol Reprod ; 107(3): 741-751, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35594450

RESUMO

The myometrium undergoes progressive tissue remodeling from early to late pregnancy to support fetal growth and transitions to the contractile phase to deliver a baby at term. Much of our effort has been focused on understanding the functional role of myometrial smooth muscle cells, but the role of extracellular matrix is not clear. This study was aimed to demonstrate the expression profile of sub-sets of genes involved in the synthesis, processing, and assembly of collagen and elastic fibers, their structural remodeling during pregnancy, and hormonal regulation. Myometrial tissues were isolated from non-pregnant and pregnant mice to analyze gene expression and protein levels of components of collagen and elastic fibers. Second harmonic generation imaging was used to examine the morphology of collagen and elastic fibers. Gene and protein expressions of collagen and elastin were induced very early in pregnancy. Further, the gene expressions of some of the factors involved in the synthesis, processing, and assembly of collagen and elastic fibers were differentially expressed in the pregnant mouse myometrium. Our imaging analysis demonstrated that the collagen and elastic fibers undergo structural reorganization from early to late pregnancy. Collagen and elastin were differentially induced in response to estrogen and progesterone in the myometrium of ovariectomized mice. Collagen was induced by both estrogen and progesterone. By contrast, estrogen induced elastin, but progesterone suppressed its expression. The current study suggests progressive extracellular matrix remodeling and its potential role in the myometrial tissue mechanical function during pregnancy and parturition.


Assuntos
Tecido Elástico , Elastina , Animais , Colágeno , Tecido Elástico/metabolismo , Elastina/metabolismo , Estrogênios/metabolismo , Feminino , Camundongos , Miométrio/metabolismo , Gravidez , Progesterona/metabolismo , Progesterona/farmacologia
3.
Matrix Biol ; 105: 53-71, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863915

RESUMO

The cervix undergoes rapid and dramatic shifts in collagen and elastic fiber structure to achieve its disparate physiological roles of competence during pregnancy and compliance during birth. An understanding of the structure-function relationships of collagen and elastic fibers to maintain extracellular matrix (ECM) homeostasis requires an understanding of the mechanisms executed by non-structural ECM molecules. Small-leucine rich proteoglycans (SLRPs) play key functions in biology by affecting collagen fibrillogenesis and regulating enzyme and growth factor bioactivities. In the current study, we evaluated collagen and elastic fiber structure-function relationships in mouse cervices using mice with genetic ablation of decorin and/or biglycan genes as representative of Class I SLRPs, and lumican gene representative of Class II SLRP. We identified structural defects in collagen fibril and elastic fiber organization in nonpregnant mice lacking decorin, or biglycan or lumican with variable resolution of defects noted during pregnancy. The severity of collagen and elastic fiber defects was greater in nonpregnant mice lacking both decorin and biglycan and defects were maintained throughout pregnancy. Loss of biglycan alone reduced tissue extensibility in nonpregnant mice while loss of both decorin and biglycan manifested in decreased rupture stretch in late pregnancy. Collagen cross-link density was similar in the Class I SLRP null mice as compared to wild-type nonpregnant and pregnant controls. A broader range in collagen fibril diameter along with an increase in mean fibril spacing was observed in the mutant mice compared to wild-type controls. Collectively, these findings uncover functional redundancy and hierarchical roles of Class I and Class II SLRPs as key regulators of cervical ECM remodeling in pregnancy. These results expand our understating of the critical role SLRPs play to maintain ECM homeostasis in the cervix.


Assuntos
Proteoglicanos Pequenos Ricos em Leucina , Neoplasias do Colo do Útero , Animais , Biglicano/genética , Biglicano/metabolismo , Colo do Útero/metabolismo , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Decorina/genética , Decorina/metabolismo , Proteínas da Matriz Extracelular/genética , Feminino , Fibromodulina , Humanos , Lumicana/genética , Camundongos , Gravidez , Proteoglicanos Pequenos Ricos em Leucina/genética
4.
Endocrinology ; 160(7): 1631-1644, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125045

RESUMO

Endometrial stromal cells differentiate to form decidual cells in a process known as decidualization, which is critical for embryo implantation and successful establishment of pregnancy. We previously reported that bone morphogenetic protein 2 (BMP2) mediates uterine stromal cell differentiation in mice and in humans. To identify the downstream target(s) of BMP2 signaling during decidualization, we performed gene-expression profiling of mouse uterine stromal cells, treated or not treated with recombinant BMP2. Our studies revealed that expression of Msx2, a member of the mammalian Msx homeobox gene family, was markedly upregulated in response to exogenous BMP2. Interestingly, conditional ablation of Msx2 in the uterus failed to prevent a decidual phenotype, presumably because of functional compensation of Msx2 by Msx1, a closely related member of the Msx family. Indeed, in Msx2-null uteri, the level of Msx1 expression in the stromal cells was markedly elevated. When conditional, tissue-specific ablation of both Msx1 and Msx2 was accomplished in the mouse uterus, a dramatically impaired decidual response was observed. In the absence of both Msx1 and Msx2, uterine stromal cells were able to proliferate, but they failed to undergo terminal differentiation. In parallel experiments, addition of BMP2 to human endometrial stromal cell cultures led to a robust enhancement of MSX1 and MSX2 expression and stimulated the differentiation process. Attenuation of MSX1 and MSX2 expression by small interfering RNAs greatly reduced human stromal differentiation in vitro, indicating a conservation of their roles as key mediators of BMP2-induced decidualization in mice and women.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator de Transcrição MSX1/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Endométrio/citologia , Endométrio/efeitos dos fármacos , Feminino , Proteínas de Homeodomínio/genética , Humanos , Fator de Transcrição MSX1/genética , Camundongos , Camundongos Knockout , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo
5.
Semin Reprod Med ; 35(2): 190-200, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28278536

RESUMO

Through pregnancy the cervix must simultaneously remain competent for pregnancy maintenance and yet become progressively compliant to ensure on time parturition. Cervical changes precede not only term but also preterm birth. Thus, an understanding of the molecular mechanisms by which the cervix maintains the delicate balance between competence and compliance is required to prevent the potential for lifelong health complications that can result from a premature birth. Recent advances and accumulating evidence support distinct roles for the cervical epithelia and stroma in sustaining competence. Concurrently, structural reorganization of the stromal extracellular matrix allows for the gradual decline in tissue compliance. In recent years, advances in our understanding of the cervical remodeling process has resulted from the collective insights derived from biological, genomics, engineering, and mathematical modeling studies on clinical samples and animal models. This review will highlight recent literature that advances understanding of (1) the importance of barrier function in the lower female reproductive tract in protection against ascending infection, (2) cellular and extracellular matrix changes in the cervical stroma that influence the mechanical function of the cervix, (3) the potential translation of biological insights into clinical tools that impact preterm birth, and (4) the distinction between term and specific pathways of preterm birth. Finally, we present a discussion of future areas of investigation that are likely to advance understanding and lead to the development of clinical tools for accurate detection and prevention of premature birth.


Assuntos
Colo do Útero/citologia , Células Epiteliais/fisiologia , Parto , Células Estromais/fisiologia , Animais , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Fenótipo , Gravidez , Resultado da Gravidez , Nascimento Prematuro/metabolismo , Nascimento Prematuro/fisiopatologia , Transdução de Sinais , Células Estromais/metabolismo
6.
Endocrinology ; 158(4): 950-962, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28204185

RESUMO

The extracellular matrix (ECM) plays an active and dynamic role that both reflects and facilitates the functional requirements of a tissue. The mature ECM of the nonpregnant cervix is drastically reorganized during pregnancy to drive changes in tissue mechanics that ensure safe birth. In this study, our research on mice deficient in the proteoglycan decorin have led to the finding that progesterone and estrogen play distinct and complementary roles to orchestrate structural reorganization of both collagen and elastic fibers in the cervix during pregnancy. Abnormalities in collagen and elastic fiber structure and tissue mechanical function evident in the cervix of nonpregnant and early pregnant decorin-null mice transiently recover for the remainder of pregnancy only to return 1 month postpartum. Consistent with the hypothesis that pregnancy levels of progesterone and estrogen may regulate ECM organization and turnover, expressions of factors required for assembly and synthesis of collagen and elastic fibers are temporally regulated, and the ultrastructure of collagen fibrils and elastic fibers is markedly altered during pregnancy in wild-type mice. Finally, utilizing ovariectomized nonpregnant decorin-null mice, we demonstrate structural resolution of collagen and elastic fibers by progesterone or estrogen, respectively, and the potential for both ECM proteins to contribute to mechanical function. These investigations advance understanding of regulatory factors that drive specialized ECM organization and contribute to an understanding of the cervical remodeling process, which may provide insight into potential complications associated with preterm birth that impact 9.6% of live births in the United States.


Assuntos
Colo do Útero/efeitos dos fármacos , Colágeno/metabolismo , Tecido Elástico/efeitos dos fármacos , Elastina/metabolismo , Estrogênios/farmacologia , Matriz Extracelular/efeitos dos fármacos , Progesterona/farmacologia , Animais , Colo do Útero/metabolismo , Tecido Elástico/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Camundongos , Ovariectomia , Gravidez , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA