Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
FASEB J ; 38(10): e23689, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38785406

RESUMO

Neuroblastoma, a prevalent extracranial solid tumor in children, arises from undifferentiated nerve cells. While tumor vasculature, often characterized by increased permeability, influences metastasis and recurrence, the direct impact of blood-borne molecules on tumor progression remains unclear. In the present study, we focused on the effect of exposure to albumin, one of the most abundant proteins in the serum, on human neuroblastoma cells. Albumin exposure elevated oxidative stress and led to mitochondria dysfunction via the activation of TGFß and PI3K pathways, accompanied by an increase in the metastatic and invasive properties of neuroblastoma cells. Proteins relevant to the induction of autophagy were upregulated in response to prolonged albumin exposure. Additionally, pre-exposure to albumin before treatment resulted in increased resistance to paclitaxel. Two valeriana-type iridoid glycosides, patrisophoroside and patrinalloside, recently isolated from Nardostachys jatamansi significantly mitigated the effect of albumin on oxidative stress, cell invasiveness, and chemoresistance. These findings illuminate the potential role of blood-borne molecules, such as albumin, in the progression and metastasis of neuroblastoma, as well as the possible therapeutic implications of valeriana-type iridoid glycosides in anti-cancer treatment.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glicosídeos Iridoides , Neuroblastoma , Paclitaxel , Humanos , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Neuroblastoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Paclitaxel/farmacologia , Glicosídeos Iridoides/farmacologia , Linhagem Celular Tumoral , Invasividade Neoplásica , Estresse Oxidativo/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Valeriana/química , Albumina Sérica/metabolismo
2.
Nat Prod Rep ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717742

RESUMO

Covering 2016 up to the end of 2023Alpinia is the largest genus of flowering plants in the ginger family, Zingiberaceae, and comprises about 500 species. Many Alpinia are commonly cultivated ornamental plants, and some are used as spices or traditional medicine to treat inflammation, hyperlipidemia, and cancers. However, only a few comprehensive reviews have been published on the phytochemistry and pharmacology of this genus, and the latest review was published in 2017. In this review, we provide an extensive coverage of the studies on Alpinia species reported from 2016 through 2023, including newly isolated compounds and potential biological effects. The present review article shows that Alpinia species have a wide spectrum of pharmacological activities, most due to the activities of diarylheptanoids, terpenoids, flavonoids, and phenolics.

3.
Int J Biol Macromol ; 263(Pt 2): 130356, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395283

RESUMO

Mesenchymal stem cell (MSC)-based therapies show great potential in treating various diseases. However, control of the fate of injected cells needs to be improved. In this work, we developed an efficient methodology for modulating chondrogenic differentiation of MSCs. We fabricated heterospheroids with two sustained-release depots, a quaternized chitosan microsphere (QCS-MP) and a poly (lactic-co-glycolic acid) microsphere (PLGA-MP). The results show that heterospheroids composed of 1 × 104 to 5 × 104 MSCs formed rapidly during incubation in methylcellulose medium and maintained high cell viability in long-term culture. The MPs were uniformly distributed in the heterospheroids, as shown by confocal laser scanning microscopy. Incorporation of transforming growth factor beta 3 into QCS-MPs and of dexamethasone into PLGA-MPs significantly promoted the expression of chondrogenic genes and high accumulation of glycosaminoglycan in heterospheroids. Changes in crucial metabolites in the dual drug depot-engineered heterospheroids were also evaluated using 1H NMR-based metabolomics analysis to verify their successful chondrogenic differentiation. Our heterospheroid fabrication platform could be used in tissue engineering to study the effects of various therapeutic agents on stem cell fate.


Assuntos
Quitosana , Células-Tronco Mesenquimais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Microesferas , Quitosana/farmacologia , Ácido Poliglicólico/farmacologia , Ácido Láctico/farmacologia , Glicóis , Preparações de Ação Retardada/farmacologia , Células Cultivadas , Diferenciação Celular , Condrogênese
4.
Phytochemistry ; 219: 113974, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211847

RESUMO

Twenty-one angular dihydropyranocoumarins and a linear furanocoumarin, including four previously undescribed compounds (1-4), were isolated from the flowers of Peucedanum japonicum (Umbelliferae). The structures of 1-4, along with their absolute stereochemistry, were determined to be (3'S,4'S)-3'-O-propanoyl-4'-O-(3‴-methyl-2‴-butenoyl)khellactone (1), (3'S,4'S)-3'-O-propanoyl-4'-O-(2‴-methyl-2‴Z-butenoyl)khellactone (2), (3'S,4'S)-3'-O-propanoyl-4'-O-(2‴-methylbutanoyl)khellactone (3), and (3'S,4'S)-3'-O-(2″-methylpropanoyl)-4'-O-(3‴-methyl-2‴-butenoyl)khellactone (4) using one- and two-dimensional nuclear magnetic resonance, high-resolution electrospray ionization mass spectroscopy, and electronic circular dichroism spectroscopy. In addition, the absolute configuration of the three angular dihydropyranocoumarins (5-7) was determined for the first time in this study. Among the previously reported compounds isolated in this study, 8 and 9 were isolated for the first time from the genus Peucedanum, whereas 10 and 11 were previously unreported and had not been isolated from P. japonicum to date. Furthermore, all isolated compounds were evaluated for their aldo-keto reductase 1C1 inhibitory activities on A549 human non-small-cell lung cancer cells. Compounds 10 and 12 exhibited substantial AKR1C1 inhibitory activities with IC50 values of 35.8 ± 0.9 and 44.2 ± 1.5 µM, respectively.


Assuntos
Apiaceae , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Flores , Aldo-Ceto Redutases
5.
Heliyon ; 9(9): e20179, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809399

RESUMO

Lung cancer, which has a high incidence and mortality rates, often metastasizes and exhibits resistance to radiation therapy. Seongsanamide B has conformational features that suggest it has therapeutic potential; however, its antitumor activity has not yet been reported. We evaluated the possibility of seongsanamide B as a radiation therapy efficiency enhancer to suppress γ-irradiation-induced metastasis in non-small cell lung cancer. Seongsanamide B suppressed non-small cell lung cancer cell migration and invasion caused by γ-irradiation. Furthermore, it suppressed γ-irradiation-induced upregulation of Bcl-XL and its downstream signaling molecules, such as superoxide dismutase 2 (SOD2) and phosphorylated Src, by blocking the nuclear translocation of phosphorylated STAT3. Additionally, seongsanamide B markedly modulated the γ-irradiation-induced upregulation of E-cadherin and vimentin. Consistent with the results obtained in vitro, while seongsanamide B did not affect xenograft tumor growth, it significantly suppressed γ-irradiation-induced metastasis by inhibiting Bcl-XL/SOD2/phosphorylated-Src expression and modulating E-cadherin and vimentin expression in a mouse model. Thus, seongsanamide B may demonstrate potential applicability as a radiation therapy efficiency enhancer for lung cancer treatment.

6.
Nat Commun ; 14(1): 2593, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147330

RESUMO

Programmed cell death protein 1 (PD-1), expressed on tumor-infiltrating T cells, is a T cell exhaustion marker. The mechanisms underlying PD-1 upregulation in CD4 T cells remain unknown. Here we develop nutrient-deprived media and a conditional knockout female mouse model to study the mechanism underlying PD-1 upregulation. Reduced methionine increases PD-1 expression on CD4 T cells. The genetic ablation of SLC43A2 in cancer cells restores methionine metabolism in CD4 T cells, increasing the intracellular levels of S-adenosylmethionine and yielding H3K79me2. Reduced H3K79me2 due to methionine deprivation downregulates AMPK, upregulates PD-1 expression and impairs antitumor immunity in CD4 T cells. Methionine supplementation restores H3K79 methylation and AMPK expression, lowering PD-1 levels. AMPK-deficient CD4 T cells exhibit increased endoplasmic reticulum stress and Xbp1s transcript levels. Our results demonstrate that AMPK is a methionine-dependent regulator of the epigenetic control of PD-1 expression in CD4 T cells, a metabolic checkpoint for CD4 T cell exhaustion.


Assuntos
Linfócitos T CD4-Positivos , Neoplasias , Receptor de Morte Celular Programada 1 , Animais , Feminino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Linfócitos T CD8-Positivos , Metionina/metabolismo , Camundongos Knockout , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Racemetionina/metabolismo , Regulação para Cima
7.
Phytochemistry ; 211: 113711, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150434

RESUMO

During the screening of the cytotoxicity of rare Korean endemic plants, the extract of Thuja koraiensis Nakai displayed potent cytotoxicity against the adenocarcinomic human alveolar basal epithelial A549 cell line. Through a series of separations via column chromatography, three undescribed abietanes, an undescribed labdane along with a labdane, and a biflavonoid were purified from methylene chloride (CH2Cl2) fraction possessing a potent cytotoxic effect. Extensive 1D and 2D NMR spectroscopic data analyses, in combination with quantum chemical calculations were conducted to establish the planar and absolute configurations of thujakoraienes A-C. The chemical structure of thujakoraiene D was elucidated by spectroscopic data analysis and competing enantioselective acylation. Thujakoraienes A and C along with 7,7″-di-O-methylamentoflavone, showed cytotoxic effects on A549 cells, with IC50 values of 64.86, 47.97, and 16.14 µM, respectively. Finally, thujakoraiene C and 7,7″-di-O-methylamentoflavone were identified as potent cytotoxic compounds in A549 cells, followed by an additional cytotoxicity test in the normal human lung fibroblast MRC-5 cell line. This is the first study on the non-volatile chemicals in the extract of T. koraiensis and comparison of chemical profiles of T. orientalis and T. koraiensis.


Assuntos
Antineoplásicos , Diterpenos , Thuja , Humanos , Células A549 , Thuja/química , Estrutura Molecular , Antineoplásicos/farmacologia , Diterpenos/química , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral
8.
ACS Appl Mater Interfaces ; 15(22): 26373-26384, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37219569

RESUMO

Potentiation of stem cell potency is critical for successful tissue engineering, especially for bone regeneration. Three-dimensional cell culture and bioactive molecule co-delivery with cells have been proposed to achieve this effect. Here, we provide a uniform and scalable fabrication of osteogenic microtissue constructs of mesenchymal stem cell (MSC) spheroids surface-engineered with dexamethasone-releasing polydopamine-coated microparticles (PD-DEXA/MPs) to target bone regeneration. The microparticle conjugation process was rapid and cell-friendly and did not affect the cell viability or key functionalities. The incorporation of DEXA in the conjugated system significantly enhanced the osteogenic differentiation of MSC spheroids, as evidenced by upregulating osteogenic gene expression and intense alkaline phosphatase and alizarin red S staining. In addition, the migration of MSCs from spheroids was tested on a biocompatible macroporous fibrin scaffold (MFS). The result showed that PD-DEXA/MPs were stably anchored on MSCs during cell migration over time. Finally, the implantation of PD-DEXA/MP-conjugated spheroid-loaded MFS into a calvarial defect in a mouse model showed substantial bone regeneration. In conclusion, the uniform fabrication of microtissue constructs containing MSC spheroids with drug depots shows a potential to improve the performance of MSCs in tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Esferoides Celulares , Camundongos , Animais , Osteogênese , Regeneração Óssea , Diferenciação Celular , Engenharia Tecidual/métodos , Dexametasona/farmacologia , Dexametasona/metabolismo
9.
Molecules ; 27(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36364218

RESUMO

Peucedanum japonicum (Umbelliferae) is widely distributed throughout Southeast Asian countries. The root of this plant is used in traditional medicine to treat colds and pain, whereas the young leaves are considered an edible vegetable. In this study, the differences in coumarin profiles for different parts of P. japonicum including the flowers, roots, leaves, and stems were compared using ultra-performance liquid chromatography time-of-flight mass spectrometry. Twenty-eight compounds were tentatively identified, including three compounds found in the genus Peucedanum for the first time. Principal component analysis using the data set of the measured mass values and intensities of the compounds exhibited distinct clustering of the flower, leaf, stem, and root samples. In addition, their anticancer activities were screened using an Aldo-keto reductase (AKR)1C1 assay on A549 human non-small-cell lung cancer cells and the flower extract inhibited AKR1C1 activity. Based on these results, seven compounds were selected as potential markers to distinguish between the flower part versus the root, stem, and leaf parts using an orthogonal partial least-squares discriminant analysis. This study is the first to provide information on the comparison of coumarin profiles from different parts of P. japonicum as well as their AKR1C1 inhibitory activities. Taken together, the flowers of P. japonicum offer a new use related to the efficacy of overcoming anticancer drug resistance, and may be a promising source for the isolation of active lead compounds.


Assuntos
Apiaceae , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Apiaceae/química , Cumarínicos/farmacologia , Aldo-Ceto Redutases
10.
Plants (Basel) ; 11(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365348

RESUMO

Esculeoside A and tomatine are two major steroidal alkaloids in tomato fruit (Solanum lycopersicum) that exhibit anti-inflammatory, anticancer, and anti-hyperlipidemia activities. Tomatine contained in immature tomato fruit is converted to esculeoside A as the fruit matures. To develop new tomato varieties based on the content analysis of functional secondary metabolites, 184 mutant lines were generated from the original cultivar (S. lycopersicum cv. Micro-Tom) by radiation breeding. Ultra-performance liquid chromatography coupled with evaporative light scattering detector was used to identify the mutant lines with good traits by analyzing tomatine and esculeoside A content. Compared with the original cultivar, candidates for highly functional cultivars with high esculeoside A content were identified in the mature fruit of the mutant lines. The mutant lines with low and high tomatine content at an immature stage were selected as edible cultivars due to toxicity reduction and as a source of tomatine with various pharmacological activities, respectively. During the process of ripening from green to red tomatoes, the rate of conversion of tomatine to esculeoside A was high in the green tomatoes with a low tomatine content, whereas green tomatoes with a high tomatine content exhibited a low conversion rate. Using methanol extracts prepared from unripe and ripe fruits of the original cultivar and its mutant lines and two major compounds, we examined their cytotoxicity against FaDu human hypopharynx squamous carcinoma cells. Only tomatine exhibited cytotoxicity with an IC50 value of 5.589 µM, whereas the other samples did not exhibit cytotoxicity. Therefore, radiation breeding represents a useful tool for developing new cultivars with high quality, and metabolite analysis is applicable for the rapid and objective selection of potential mutant lines.

11.
J Agric Food Chem ; 70(40): 13002-13014, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36167496

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are indispensable analytical tools to provide chemical fingerprints in metabolomics studies. The present study evaluated radiation breeding wheat lines for chemical changes by non-targeted NMR-based metabolomics analysis of bran extracts. Multivariate analysis following spectral binning suggested pyrrole-2-carbaldehydes as chemical markers of four mutant lines with distinct NMR fingerprints in a δH range of 9.28-9.40 ppm. Further NMR and MS data analysis, along with chromatographic fractionation and synthetic preparation, aimed at structure identification of marker metabolites and identified five pyrrole-2-carbaldehydes. Quantum-mechanical driven 1H iterative full spin analysis (QM-HiFSA) on synthetic pyrrole-2-carbaldehydes provided a precise description of complex peak patterns. Biological evaluation of pyrrole-2-carbaldehydes was performed with nine synthetic products, and six compounds showed hepatoprotective effects via modulation of reactive oxygen species production. Given that three out of five identified in wheat bran of radiation were described for hepatoprotective activity, the value of radiation mutation to greatly enhance pyrrole-2-carbaldehyde production was supported.


Assuntos
Fibras na Dieta , Metabolômica , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas , Metabolômica/métodos , Pirróis , Espécies Reativas de Oxigênio
12.
Phytochemistry ; 203: 113375, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35973611

RESUMO

Nardostachys jatamansi is close to Valerian in consideration of their same psychoactive effects, such as sedation and neuroprotection. Valeriana-type iridoids are major active components of Valerian, but few valeriana-type iridoids have been isolated from N. jatamansi. Iridoid-targeting chemical investigation of the rhizomes of N. jatamansi resulted in the isolation of seven valeriana-type iridoid glycosides, four of which are previously undescribed. Their structures were determined through NMR spectroscopy, high-resolution mass spectrometry, and optical rotation experiments. In addition, the inaccurate configurations of patrinalloside and 6″-acetylpatrinalloside from previous reports were corrected. These compounds, unstable due to alcoholic solvents, were more stable in the mixtures than in purified forms, as monitored by the qNMR method, supporting the use of natural products as mixtures. Furthermore, the isolates, as well as crude and solvent partition extracts, were found to have a protective effect against hydrogen-peroxide-induced toxicity in human neuroblastoma cells, as confirmed by assays for cell viability and antioxidation. These findings suggest the potential therapeutic application of the valeriana-type iridoid glycosides isolated herein with improved biochemical stability.


Assuntos
Produtos Biológicos , Nardostachys , Neuroblastoma , Valeriana , Humanos , Hidrogênio/análise , Peróxido de Hidrogênio/análise , Glicosídeos Iridoides/farmacologia , Iridoides/química , Estresse Oxidativo , Extratos Vegetais/química , Raízes de Plantas/química , Rizoma , Solventes , Valeriana/química
13.
Front Nutr ; 9: 950505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811944

RESUMO

[This corrects the article DOI: 10.3389/fnut.2021.806744.].

14.
Molecules ; 26(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34946633

RESUMO

Lentil (Lens culinaris; Fabaceae), one of the major pulse crops in the world, is an important source of proteins, prebiotics, lipids, and essential minerals as well as functional components such as flavonoids, polyphenols, and phenolic acids. To improve crop nutritional and medicinal traits, hybridization and mutation are widely used in plant breeding research. In this study, mutant lentil populations were generated by γ-irradiation for the development of new cultivars by inducing genetic diversity. Molecular networking via Global Natural Product Social Molecular Networking web platform and dipeptidyl peptide-IV inhibitor screening assay were utilized as tools for structure-based discovery of active components in active mutant lines selected among the lentil population. The bioactivity-based molecular networking analysis resulted in the annotation of the molecular class of phosphatidylcholine (PC) from the most active mutant line. Among PCs, 1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (18:0 Lyso PC) was selected for further in vivo study of anti-obesity effect in a high-fat diet (HFD)-induced obese mouse model. The administration of 18:0 Lyso PC not only prevented body weight gain and decreased relative gonadal adipose tissue weight, but also attenuated the levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, and leptin in the sera of HFD-induced obese mice. Additionally, 18:0 Lyso PC treatment inhibited the increase of adipocyte area and crown-like structures in adipose tissue. Therefore, these results suggest that 18:0 Lyso PC is a potential compound to have protective effects against obesity, improving obese phenotype induced by HFD.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Fármacos Antiobesidade , LDL-Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Lens (Planta) , Obesidade , Fosfatidilcolinas , Animais , Fármacos Antiobesidade/química , Fármacos Antiobesidade/farmacologia , Lens (Planta)/química , Lens (Planta)/genética , Masculino , Camundongos , Obesidade/sangue , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Fosfatidilcolinas/química , Fosfatidilcolinas/genética , Fosfatidilcolinas/farmacologia
15.
Antioxidants (Basel) ; 10(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34829709

RESUMO

Liver fibrosis, which means a sort of the excessive accumulation of extracellular matrices (ECMs) components through the liver tissue, is considered as tissue repair or wound-healing status. This pathological stage potentially leads to cirrhosis, if not controlled, it progressively results in hepatocellular carcinoma. Herein, we investigated the pharmacological properties and underlying mechanisms of Gardeniae Fructus (GF) against thioacetamide (TAA)-induced liver fibrosis of mice model. GF not only attenuated hepatic tissue oxidation but also improved hepatic inflammation. We further confirmed that GF led to ameliorating liver fibrosis by ECMs degradations. Regarding the possible underlying mechanism of GF, we observed GF regulated epigenetic regulator, Sirtuin 1 (SIRT1), in TAA-injected liver tissue. These alterations were well supported by SIRT1 related signaling pathways through regulations of its downstream proteins including, AMP-activated protein kinase (AMPK), p47phox, NADPH oxidase 2, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1, respectively. To validate the possible mechanism of GF, we used HepG2 cells with hydrogen peroxide treated oxidative stress and chronic exposure conditions via deteriorations of cellular SIRT1. Moreover, GF remarkably attenuated ECMs accumulations in transforming growth factor-ß1-induced LX-2 cells relying on the SIRT1 existence. Taken together, GF attenuated liver fibrosis through AMPK/SIRT1 pathway as well as Nrf2 signaling cascades. Therefore, GF could be a clinical remedy for liver fibrosis patients in the future.

16.
Front Pharmacol ; 12: 765521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690788

RESUMO

We demonstrated in our previous reports that dimeric form of translationally controlled tumor protein (dTCTP) initiates a variety of allergic phenomena. In the present study, we examined whether and how dTCTP's role in allergic inflammation can be modulated or negated. The possible potential of cardamonin as an anti-allergic agent was assessed by ELISA using BEAS-2B cells and OVA-challenged allergic mouse model. The interaction between cardamonin and dTCTP was confirmed by SPR assay. Cardamonin was found to reduce the secretion of IL-8 caused by dTCTP in BEAS-2B cells by interacting with dTCTP. This interaction between dTCTP and cardamonin was confirmed through kinetic analysis (KD = 4.72 ± 0.07 µM). Also, cardamonin reduced the migration of various inflammatory cells in the bronchoalveolar lavage fluid (BALF), inhibited OVA specific IgE secretion and bronchial remodeling. In addition, cardamonin was observed to have an anti-allergic response by inhibiting the activity of NF-κB. Cardamonin exerts anti-allergic anti-inflammatory effect by inhibiting dTCTP, suggesting that it may be useful in the therapy of allergic diseases.

17.
Mar Drugs ; 19(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34436304

RESUMO

The epithelial-mesenchymal transition (EMT) of cancer cells is a crucial process in cancer cell metastasis. An Aquimarina sp. MC085 extract was found to inhibit A549 human lung cancer cell invasion, and caprolactin C (1), a new natural product, α-amino-ε-caprolactam linked to 3-methyl butanoic acid, was purified through bioactivity-guided isolation of the extract. Furthermore, its enantiomeric compound, ent-caprolactin C (2), was synthesized. Both 1 and 2 inhibited the invasion and γ-irradiation-induced migration of A549 cells. In transforming growth factor-ß (TGF-ß)-treated A549 cells, 2 inhibited the phosphorylation of Smad2/3 and suppressed the EMT cell marker proteins (N-cadherin, ß-catenin, and vimentin), as well as the related messenger ribonucleic acid expression (N-cadherin, matrix metalloproteinase-9, Snail, and vimentin), while compound 1 did not suppress Smad2/3 phosphorylation and the expression of EMT cell markers. Therefore, compound 2 could be a potential candidate for antimetastatic agent development, because it suppresses TGF-ß-induced EMT.


Assuntos
Antineoplásicos/farmacologia , Caproatos/farmacologia , Flavobacteriaceae/química , Lactonas/farmacologia , Células A549 , Animais , Organismos Aquáticos , Linhagem Celular Tumoral/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Fator de Crescimento Transformador beta/metabolismo
18.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203232

RESUMO

Colorectal cancer is one of the life-threatening ailments causing high mortality and morbidity worldwide. Despite the innovation in medical genetics, the prognosis for metastatic colorectal cancer in patients remains unsatisfactory. Recently, lichens have attracted the attention of researchers in the search for targets to fight against cancer. Lichens are considered mines of thousands of metabolites. Researchers have reported that lichen-derived metabolites demonstrated biological effects, such as anticancer, antiviral, anti-inflammatory, antibacterial, analgesic, antipyretic, antiproliferative, and cytotoxic, on various cell lines. However, the exploration of the biological activities of lichens' metabolites is limited. Thus, the main objective of our study was to evaluate the anticancer effect of secondary metabolites isolated from lichen (Usnea barbata 2017-KL-10) on the human colorectal cancer cell line HCT116. In this study, 2OCAA exhibited concentration-dependent anticancer activities by suppressing antiapoptotic genes, such as MCL-1, and inducing apoptotic genes, such as BAX, TP53, and CDKN1A(p21). Moreover, 2OCAA inhibited the migration and invasion of colorectal cancer cells in a concentration-dependent manner. Taken together, these data suggest that 2OCAA is a better therapeutic candidate for colorectal cancer.


Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Triterpenos , Usnea/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias Colorretais/metabolismo , Células HCT116 , Humanos , Triterpenos/química , Triterpenos/farmacologia
19.
Mar Drugs ; 19(4)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920324

RESUMO

Menopause, caused by decreases in estrogen production, results in symptoms such as facial flushing, vaginal atrophy, and osteoporosis. Although hormone replacement therapy is utilized to treat menopausal symptoms, it is associated with a risk of breast cancer development. We aimed to evaluate the estrogenic activities of Spartina anglica (SA) and its compounds and identify potential candidates for the treatment of estrogen reduction without the risk of breast cancer. We evaluated the estrogenic and anti-proliferative effects of extracts of SA and its compounds in MCF-7 breast cancer cells. We performed an uterotrophic assay using an immature female rat model. Among extracts of SA, belowground part (SA-bg-E50) had potent estrogenic activity. In the immature female rat model, the administration of SA-bg-E50 increased uterine weight compared with that in the normal group. Among the compounds isolated from SA, 1,3-di-O-trans-feruloyl-(-)-quinic acid (1) had significant estrogenic activity and induced phosphorylation at serine residues of estrogen receptor (ER)α. All extracts and compounds from SA did not increase MCF-7 cell proliferation. Compound 1 is expected to act as an ERα ligand and have estrogenic effects, without side effects, such as breast cancer development.


Assuntos
Fitoestrógenos/farmacologia , Extratos Vegetais/farmacologia , Poaceae/metabolismo , Útero/efeitos dos fármacos , Animais , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Ligantes , Células MCF-7 , Estrutura Molecular , Tamanho do Órgão , Fitoestrógenos/isolamento & purificação , Fitoestrógenos/toxicidade , Componentes Aéreos da Planta/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Raízes de Plantas/metabolismo , Poaceae/crescimento & desenvolvimento , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Útero/crescimento & desenvolvimento , Útero/metabolismo
20.
Molecules ; 26(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801065

RESUMO

Alpinia oxyphylla Miquel (Zingiberaceae) has been reported to show antioxidant, anti-inflammatory, and neuroprotective effects. In this study, two new eudesmane sesquiterpenes, 7α-hydroperoxy eudesma-3,11-diene-2-one (1) and 7ß-hydroperoxy eudesma-3,11-diene-2-one (2), and a new eremophilane sesquiterpene, 3α-hydroxynootkatone (3), were isolated from the MeOH extract of dried fruits of A. oxyphylla along with eleven known sesquiterpenes (4-14). The structures were elucidated by the analysis of 1D/2D NMR, high-resolution electrospray ionization mass spectrometry (HRESIMS), and optical rotation data. Compounds (1-3, 5-14) were evaluated for their protective effects against tert-butyl hydroperoxide (tBHP)-induced oxidative stress in adipose-derived mesenchymal stem cells (ADMSCs). As a result, treatment with isolated compounds, especially compounds 11 and 12, effectively reverted the damage of tBHP on ADMSCs in a dose-dependent manner. In particular, 11 and 12 at 50 µM improved the viability of tBHP-toxified ADMSCs by 1.69 ± 0.05-fold and 1.61 ± 0.03-fold, respectively.


Assuntos
Tecido Adiposo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Sesquiterpenos Policíclicos , Sesquiterpenos de Eudesmano , Tecido Adiposo/citologia , Alpinia , Animais , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/farmacologia , Sesquiterpenos de Eudesmano/química , Sesquiterpenos de Eudesmano/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA