Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Cyst Fibros ; 20(6): 1080-1084, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34246573

RESUMO

BACKGROUND: Chronic infection with Pseudomonas aeruginosa (P. aeruginosa) is a leading cause of death in patients with cystic fibrosis (CF). Immunobiology of P. aeruginosa infection is complex and not well understood. Chronically infected CF patients generate high levels of antibodies to P. aeruginosa, but this response does not lead to clinical improvement. Therefore, additional studies aimed at identification and understanding of the host factors that influence naturally occurring immune responses to P. aeruginosa are needed. In this investigation, we evaluated the contribution of immunoglobulin GM (γ marker) and KM (κ marker) allotypes to the antibody responses to P. aeruginosa lipopolysaccharide (LPS) O1, O6, O11, and alginate antigens and the broadly-conserved surface polysaccharide expressed by many microbial pathogens, poly-N-acetyl-D-glucosamine (PNAG), in 58 chronically infected CF patients. METHODS: IgG1 markers GM 3 and 17 and IgG2 markers GM 23- and 23+ were determined by a pre-designed TaqMan® genotyping assay. The κ chain determinants KM 1 and 3 were characterized by PCR-RFLP. Antibodies to the LPS O antigens, alginate, and PNAG were measured by an ELISA. RESULTS: Several significant associations were noted with KM alleles. Particular KM 1/3 genotypes were individually and epistatically (with GM 3/17) associated with the level of IgG antibodies to O1, O11, alginate, and PNAG antigens. CONCLUSIONS: Immunoglobulin GM and KM genotypes influence the magnitude of humoral immunity to LPS O, alginate, and PNAG antigens. These results, if confirmed in a larger study population, will be helpful in devising novel immunotherapeutic approaches against P. aeruginosa.


Assuntos
Fibrose Cística/complicações , Alótipos Gm de Imunoglobulina/imunologia , Alótipos Km de Imunoglobulina/imunologia , Infecções por Pseudomonas/imunologia , Formação de Anticorpos , Antígenos de Bactérias/imunologia , Feminino , Genótipo , Humanos , Alótipos Gm de Imunoglobulina/genética , Alótipos Km de Imunoglobulina/genética , Masculino , Infecção Persistente , Adulto Jovem
2.
Front Physiol ; 11: 580171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304273

RESUMO

Acetate, the shortest chain fatty acid, has been implicated in providing health benefits whether it is derived from the diet or is generated from microbial fermentation of fiber in the gut. These health benefits range widely from improved cardiac function to enhanced red blood cell generation and memory formation. Understanding how acetate could influence so many disparate biological functions is now an area of intensive research. Protein acetylation is one of the most common post-translational modifications and increased systemic acetate strongly drives protein acetylation. By virtue of acetylation impacting the activity of virtually every class of protein, acetate driven alterations in signaling and gene transcription have been associated with several common human diseases, including cancer. In part 2 of this review, we will focus on some of the roles that acetate plays in health and human disease. The acetate-activating enzyme acyl-CoA short-chain synthetase family member 2 (ACSS2) will be a major part of that focus due to its role in targeted protein acetylation reactions that can regulate central metabolism and stress responses. ACSS2 is the only known enzyme that can recycle acetate derived from deacetylation reactions in the cytoplasm and nucleus of cells, including both protein and metabolite deacetylation reactions. As such, ACSS2 can recycle acetate derived from histone deacetylase reactions as well as protein deacetylation reactions mediated by sirtuins, among many others. Notably, ACSS2 can activate acetate released from acetylated metabolites including N-acetylaspartate (NAA), the most concentrated acetylated metabolite in the human brain. NAA has been associated with the metabolic reprograming of cancer cells, where ACSS2 also plays a role. Here, we discuss the context-specific roles that acetate can play in health and disease.

3.
Front Physiol ; 11: 580167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281616

RESUMO

Acetate is a major end product of bacterial fermentation of fiber in the gut. Acetate, whether derived from the diet or from fermentation in the colon, has been implicated in a range of health benefits. Acetate is also generated in and released from various tissues including the intestine and liver, and is generated within all cells by deacetylation reactions. To be utilized, all acetate, regardless of the source, must be converted to acetyl coenzyme A (acetyl-CoA), which is carried out by enzymes known as acyl-CoA short-chain synthetases. Acyl-CoA short-chain synthetase-2 (ACSS2) is present in the cytosol and nuclei of many cell types, whereas ACSS1 is mitochondrial, with greatest expression in heart, skeletal muscle, and brown adipose tissue. In addition to acting to redistribute carbon systemically like a ketone body, acetate is becoming recognized as a cellular regulatory molecule with diverse functions beyond the formation of acetyl-CoA for energy derivation and lipogenesis. Acetate acts, in part, as a metabolic sensor linking nutrient balance and cellular stress responses with gene transcription and the regulation of protein function. ACSS2 is an important task-switching component of this sensory system wherein nutrient deprivation, hypoxia and other stressors shift ACSS2 from a lipogenic role in the cytoplasm to a regulatory role in the cell nucleus. Protein acetylation is a critical post-translational modification involved in regulating cell behavior, and alterations in protein acetylation status have been linked to multiple disease states, including cancer. Improving our fundamental understanding of the "acetylome" and how acetate is generated and utilized at the subcellular level in different cell types will provide much needed insight into normal and neoplastic cellular metabolism and the epigenetic regulation of phenotypic expression under different physiological stressors. This article is Part 1 of 2 - for Part 2 see doi: 10.3389/fphys.2020.580171.

4.
Front Immunol ; 11: 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153556

RESUMO

Quinolinate (Quin) is a classic example of a biochemical double-edged sword, acting as both essential metabolite and potent neurotoxin. Quin is an important metabolite in the kynurenine pathway of tryptophan catabolism leading to the de novo synthesis of nicotinamide adenine dinucleotide (NAD+). As a precursor for NAD+, Quin can direct a portion of tryptophan catabolism toward replenishing cellular NAD+ levels in response to inflammation and infection. Intracellular Quin levels increase dramatically in response to immune stimulation [e.g., lipopolysaccharide (LPS) or pokeweed mitogen (PWM)] in macrophages, microglia, dendritic cells, and other cells of the immune system. NAD+ serves numerous functions including energy production, the poly ADP ribose polymerization (PARP) reaction involved in DNA repair, and the activity of various enzymes such as the NAD+-dependent deacetylases known as sirtuins. We used highly specific antibodies to protein-coupled Quin to delineate cells that accumulate Quin as a key aspect of the response to immune stimulation and infection. Here, we describe Quin staining in the brain, spleen, and liver after LPS administration to the brain or systemic PWM administration. Quin expression was strong in immune cells in the periphery after both treatments, whereas very limited Quin expression was observed in the brain even after direct LPS injection. Immunoreactive cells exhibited diverse morphology ranging from foam cells to cells with membrane extensions related to cell motility. We also examined protein expression changes in the spleen after kynurenine administration. Acute (8 h) and prolonged (48 h) kynurenine administration led to significant changes in protein expression in the spleen, including multiple changes involved with cytoskeletal rearrangements associated with cell motility. Kynurenine administration resulted in several expression level changes in proteins associated with heat shock protein 90 (HSP90), a chaperone for the aryl-hydrocarbon receptor (AHR), which is the primary kynurenine metabolite receptor. We propose that cells with high levels of Quin are those that are currently releasing kynurenine pathway metabolites as well as accumulating Quin for sustained NAD+ synthesis from tryptophan. Further, we propose that the kynurenine pathway may be linked to the regulation of cell motility in immune and cancer cells.


Assuntos
Cinurenina/metabolismo , NAD/biossíntese , Ácido Quinolínico/metabolismo , Animais , Biomarcadores/metabolismo , Movimento Celular/efeitos dos fármacos , Gerbillinae , Proteínas de Choque Térmico HSP90/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Imunidade/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Cinurenina/administração & dosagem , Lipopolissacarídeos/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitógenos de Phytolacca americana/administração & dosagem , Poli(ADP-Ribose) Polimerases/metabolismo , Ácido Quinolínico/imunologia , Ratos , Baço/efeitos dos fármacos , Baço/metabolismo , Triptofano/metabolismo
5.
Immun Ageing ; 15: 26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30450119

RESUMO

BACKGROUND: The aim of this study was to analyse the role of GM allotypes, i.e. the hereditary antigenic determinants expressed on immunoglobulin polypeptide chains, in the attainment of longevity. The role played by immunoglobulin allotypes in the control of immune responses is well known as well as the role of an efficient immune response in longevity achievement. So, it is conceivable that particular GM allotypes may contribute to the generation of an efficient immune response that supports successful ageing, hence longevity. METHODS: In order to show if GM allotypes play a role in the achievement of longevity, we typed the DNA of 95 Long-living individuals (LLIs) and 96 young control individuals (YCs) from South Italy for GM3/17 and GM23+/- alleles. RESULTS: To demonstrate the role of GM allotypes in the attainment of longevity we compared genotype and allele frequencies of GM allotypes between LLIs and YCs. A global chi-square test (3 × 2) shows that the distribution of genotypes at the GM 3/17 locus is highly significantly different in LLIs from that observed in YCs (p < 0.0001). The 2 × 2 chi-square test shows that the carriers of the GM3 allele contribute to this highly significant difference. Accordingly, GM3 allele is significantly overrepresented in LLIs. No significant differences were instead observed regarding GM23 allele. CONCLUSION: These preliminary results show that GM3 allotype is significantly overrepresented in LLIs. To best of our knowledge, this is the first study performed to assess the role of GM allotypes in longevity. So, it should be necessary to verify the data in a larger sample of individuals to confirm GM role in the attainment of longevity.

6.
Hum Immunol ; 79(8): 632-637, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29879453

RESUMO

Glycoprotein-A repetitions predominant (GARP) is a transmembrane protein that is highly expressed in breast cancer. Its overexpression correlates with worse survival, and antibodies to GARP appear to play a protective role in a mouse model. No large-scale studies of immunity to GARP in humans have yet been undertaken. In this investigation, using a large multiethnic cohort (1738 subjects), we aimed to determine whether the magnitude of anti-GARP antibody responsiveness was significantly different in patients with breast cancer from that in matched healthy controls. We also investigated whether the allelic variation at the immunoglobulin GM (γ marker), KM (κ marker), and Fcγ receptor (FcγR) loci contributed to the interindividual variability in anti-GARP IgG antibody levels. A combined analysis of all subjects showed that levels of anti-GARP antibodies were significantly higher in patients with breast cancer than in healthy controls (mean ±â€¯SD: 7.4 ±â€¯3.5 vs. 6.9 ±â€¯3.5 absorbance units per mL (AU/µL), p < 0.0001). In the two populations with the largest sample size, the probability of breast cancer generally increases as anti-GARP antibody levels increase. Several significant individual and epistatic effects of GM, KM, and FcγR genotypes on anti-GARP antibody responsiveness were noted in both patients and controls. These results, if confirmed by independent investigations, will aid in devising personalized GARP-based immunotherapeutic strategies against breast cancer and other GARP-overexpressing malignancies.


Assuntos
Neoplasias da Mama/genética , Genótipo , Alótipos Gm de Imunoglobulina/genética , Alótipos Km de Imunoglobulina/genética , Imunoterapia/métodos , Proteínas de Membrana/imunologia , Receptores de IgG/genética , Formação de Anticorpos , Brasil , Neoplasias da Mama/imunologia , Estudos de Casos e Controles , Estudos de Coortes , Epistasia Genética , Etnicidade , Feminino , Humanos , Imunoglobulina G/sangue , Proteínas de Membrana/genética , Polimorfismo Genético , Medicina de Precisão
7.
Immunobiology ; 223(2): 178-182, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29074302

RESUMO

High levels of naturally occurring IgG antibodies to mucin 1 (MUC1), a membrane-bound glycoprotein that is overexpressed in patients with breast cancer, are associated with good prognosis. This suggests that endogenous anti-MUC1 antibodies have a protective effect and, through antibody-mediated host immunosurveillance mechanisms, might contribute to a cancer-free state. To test this possibility, we characterized a large number of multiethnic patients with breast cancer and matched controls for IgG antibodies to MUC1. We also aimed to determine whether the magnitude of anti-MUC1 antibody responsiveness was associated with particular immunoglobulin GM (γ marker), KM (κ marker), and Fcγ receptors (FcγR) genotypes. After adjusting for the confounding variables in a multivariate analysis, we found no significant difference in the levels of anti-MUC1 IgG antibodies between patients and cancer-free controls. However, in patients and controls, particular GM, KM, and FcγR genotypes-individually or epistatically-were significantly associated with the levels of anti-MUC1 IgG antibodies in a racially restricted manner. These findings, if confirmed in an independent investigation, could help identify individuals most likely to benefit from a MUC1-based therapeutic or prophylactic vaccine for MUC1-overexpressing malignancies.


Assuntos
Neoplasias da Mama/imunologia , Etnicidade , Genótipo , Imunoglobulinas/genética , Mucina-1/imunologia , Grupos Raciais , Receptores de IgG/genética , Formação de Anticorpos , Brasil/epidemiologia , Neoplasias da Mama/epidemiologia , Estudos de Coortes , Feminino , Humanos , Imunoglobulinas/sangue , Vigilância Imunológica , Japão/epidemiologia , Análise Multivariada
8.
Cell Immunol ; 312: 67-70, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27825564

RESUMO

Human cytomegalovirus (CMV), a ubiquitous herpesvirus, has been implicated in the etiology of breast cancer. It is clear that not all people exposed to CMV are equally likely to develop this malignancy, implying the presence of host genetic factors that might modulate the cancer-spurring properties of the virus. CMV has evolved sophisticated strategies for evading host immunosurveillance. One strategy involves encoding decoy Fcγ receptors (FcγR) that thwart the Fcγ-mediated effector functions, such as antibody-dependent cellular cytotoxicity. In this investigation, using an enzyme-linked immunosorbent assay (ELISA), we aimed to determine whether the decoy FcγR encoded by the CMV gene RL13 binds differentially to anti-CMV antibodies expressing different immunoglobulin GM (γ marker) allotypes, genetic markers of immunoglobulin G (IgG). Results of our ELISA binding studies showed that the absorbance values for the binding of the viral FcγR to the GM 17-expressing IgG antibodies were significantly higher than for the GM 3-expressing antibodies (0.60 vs. 0.36; p=0.0019). These findings provide mechanistic insights into the modulating role played by the genetic variants of IgG in the generation of immunity to CMV in patients with breast cancer.


Assuntos
Neoplasias da Mama/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Receptores de IgG/metabolismo , Proteínas Virais/metabolismo , Adulto , Negro ou Afro-Americano , Idoso , Anticorpos Antivirais/metabolismo , Afinidade de Anticorpos , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Evasão da Resposta Imune , Imunoglobulina G/metabolismo , Alótipos Gm de Imunoglobulina/metabolismo , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Ligação Proteica , Receptores de IgG/genética , Proteínas Virais/genética
9.
Clin Sci (Lond) ; 130(15): 1327-33, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27358028

RESUMO

We hypothesize that: (1) L-tryptophan (Trp) is greatly utilized and not depleted in pregnancy; (2) fetal tolerance is achieved in part through immunosuppressive kynurenine (Kyn) metabolites produced by the flux of plasma free (non-albumin-bound) Trp down the Kyn pathway; (3) the role of indoleamine 2,3-dioxygenase (IDO) in infection is not related to limitation of an essential amino acid, but is rather associated with stress responses and the production of Kyn metabolites that regulate the activities of antigen presenting cells and T-cells, as well as increased NAD(+) synthesis in IDO-expressing cells; (4) Trp depletion is not a host defence mechanism, but is a consequence of Trp utilization. We recommend that future studies in normal and abnormal pregnancies and in patients with infections or cancer should include measurements of plasma free Trp, determinants of Trp binding (albumin and non-esterified fatty acids), total Trp, determinants of activities of the Trp-degrading enzymes Trp 2,3-dioxygenase (TDO) (cortisol) and IDO (cytokines) and levels of Kyn metabolites. We also hypothesize that abnormal pregnancies and failure to combat infections or cancer may be associated with excessive Trp metabolism that can lead to pathological immunosuppression by excessive production of Kyn metabolites. Mounting evidence from many laboratories indicates that Trp metabolites are key regulators of immune cell behaviour, whereas Trp depletion is an indicator of extensive utilization of this key amino acid.


Assuntos
Doenças Transmissíveis/metabolismo , Feto/metabolismo , Tolerância Imunológica , Complicações na Gravidez/metabolismo , Triptofano/metabolismo , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Doenças Transmissíveis/sangue , Doenças Transmissíveis/imunologia , Feminino , Feto/imunologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/imunologia , Cinurenina/metabolismo , NAD/metabolismo , Estresse Oxidativo , Gravidez , Complicações na Gravidez/sangue , Complicações na Gravidez/imunologia , Ligação Proteica , Linfócitos T/imunologia , Linfócitos T/metabolismo , Triptofano/sangue , Triptofano/deficiência , Triptofano/imunologia , Triptofano Oxigenase/metabolismo
10.
J Infect Dis ; 213(4): 611-7, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26410593

RESUMO

Increasing evidence implicates human cytomegalovirus (HCMV) in the etiopathogenesis of breast cancer. Antibodies to this virus in patients with breast cancer have been reported, but no large-scale studies have been conducted to determine whether the antibody levels differ between patients and matched controls. Using specimens from a large (1712 subjects) multiethnic case-control study, we aimed to determine whether the levels of antibodies to the HCMV glycoprotein B (gB) differed between patients and controls and whether they were associated with particular immunoglobulin γ marker (GM), κ marker (KM), and Fcγ receptor (FcγR) genotypes. A combined analysis showed that anti-gB immunoglobulin G antibody levels were higher in healthy controls than in patients (P < .0001). Stratified analyses showed population-specific differences in the magnitude of anti-gB antibody responsiveness and in the contribution of particular GM, KM, and FcγR genotypes to these responses. These findings may have implications for HCMV-based immunotherapy against breast cancer and other HCMV-associated diseases.


Assuntos
Anticorpos Antivirais/sangue , Neoplasias da Mama/complicações , Infecções por Citomegalovirus/epidemiologia , Imunoglobulinas/genética , Receptores de IgG/genética , Proteínas do Envelope Viral/imunologia , Estudos de Casos e Controles , Feminino , Humanos
11.
J Cell Biochem ; 117(3): 574-88, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26251955

RESUMO

Metabolic networks are significantly altered in neoplastic cells. This altered metabolic program leads to increased glycolysis and lipogenesis and decreased dependence on oxidative phosphorylation and oxygen consumption. Despite their limited mitochondrial respiration, cancer cells, nonetheless, derive sufficient energy from alternative carbon sources and metabolic pathways to maintain cell proliferation. They do so, in part, by utilizing fatty acids, amino acids, ketone bodies, and acetate, in addition to glucose. The alternative pathways used in the metabolism of these carbon sources provide opportunities for therapeutic manipulation. Acetate, in particular, has garnered increased attention in the context of cancer as both an epigenetic regulator of posttranslational protein modification, and as a carbon source for cancer cell biomass accumulation. However, to date, the data have not provided a clear understanding of the precise roles that protein acetylation and acetate oxidation play in carcinogenesis, cancer progression or treatment. This review highlights some of the major issues, discrepancies, and opportunities associated with the manipulation of acetate metabolism and acetylation-based signaling in cancer development and treatment.


Assuntos
Epigênese Genética , Neoplasias/tratamento farmacológico , Processamento de Proteína Pós-Traducional , Acetato-CoA Ligase/fisiologia , Acetatos/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Animais , Carcinogênese/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias/dietoterapia , Neoplasias/enzimologia , Transdução de Sinais
12.
Neuro Oncol ; 17(5): 678-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25326496

RESUMO

BACKGROUND: Immunoglobulin γ marker (GM) and κ marker (KM) allotypes, hereditary antigenic determinants of γ and κ chains, respectively, have been shown to be associated with immunity to a variety of self and nonself antigens, but their possible contribution to immunity to the tumor-associated antigens epidermal growth factor receptor (EGFR) and EGFR variant (v)III has not been evaluated. The aim of the present investigation was to determine whether the interindividual variation in endogenous antibody responsiveness to EGFR and EGFRvIII is associated with particular GM, KM, and Fcγ receptor (FcγR) genotypes and whether antibody levels were associated with the overall survival of patients with glioblastoma. METHODS: A total of 126 Caucasian participants with glioblastoma were genotyped for several GM, KM, and FcγR alleles and characterized for IgG antibodies to EGFR and EGFRvIII antigens. RESULTS: The anti-EGFR antibody levels associated with GM 3/3 homozygotes and GM 3/17 heterozygotes were similar (15.9 vs 16.4 arbitrary units [AU]/µL) and significantly lower than those associated with GM 17/17 homozygotes (19.6 AU/µL; nominal P = .007). Participants homozygous for the GM 21 allele also had significantly higher levels of anti-EGFR antibodies than GM 5/5 homozygotes and GM 5/21 heterozygotes (20.1 vs 16.0 and 16.3 AU/µL; nominal P = .005). Similar associations were found with immune responsiveness to EGFRvIII. Higher anti-EGFR and anti-EGFRvIII antibody levels were associated with enhanced overall survival (16 vs 11 mo, nominal P = .038 and 20 vs 11 mo, nominal P = .004, respectively). CONCLUSIONS: GM allotypes contribute to humoral immunity to EGFR in glioblastoma.


Assuntos
Receptores ErbB/imunologia , Glioblastoma/genética , Glioblastoma/imunologia , Alótipos Gm de Imunoglobulina/genética , Alótipos Gm de Imunoglobulina/imunologia , Alótipos Km de Imunoglobulina/genética , Alótipos Km de Imunoglobulina/imunologia , Adolescente , Adulto , Idoso , Feminino , Genótipo , Glioblastoma/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de IgG/genética , Sobrevida , Adulto Jovem
13.
J Infect Dis ; 210(11): 1823-6, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24973460

RESUMO

Human cytomegalovirus (HCMV) is a risk factor for many human diseases, but among exposed individuals, not everyone is equally likely to develop HCMV-spurred diseases, implying the presence of host genetic factors that might modulate immunity to this virus. Here, we show that antibody responsiveness to HCMV glycoprotein B (gB) is significantly associated with particular immunoglobulin GM (γ marker) genotypes. Anti-HCMV gB antibody levels were highest in GM 17/17 homozygotes, intermediate in GM 3/17 heterozygotes, and lowest in GM 3/3 homozygotes (28.2, 19.0, and 8.1 µg/mL, respectively; P=.014). These findings provide mechanistic insights in the etiopathogenesis of HCMV-spurred diseases.


Assuntos
Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Genes de Imunoglobulinas , Imunidade Humoral , Proteínas do Envelope Viral/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Estudos de Casos e Controles , Genótipo , Humanos , Alótipos de Imunoglobulina/genética , Alótipos de Imunoglobulina/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia
14.
Oncoimmunology ; 3(1): e27317, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24701371

RESUMO

Antibody-dependent, cell-mediated cytotoxicity (ADCC) is one of the major mechanisms underlying the clinical efficacy of anticancer monoclonal antibodies (mAbs), such as the mucin 1 (MUC1)-targeting molecule HuHMFG1. IgG antibodies trigger ADCC upon interaction with Fcγ receptors (FcγRs) expressed on the surface of immune effector cells. Polymorphisms affecting FcγRs are known to influence the magnitude of ADCC, but the impact of natural genetic variations in the Fc-coding sequence, γ marker (GM) allotypes, has not been adequately investigated. Using an ADCC inhibition assay, we demonstrate that IgG1 antibodies of the 3+, 1-, 2- GM allotype block almost all valine-containing FcγRIIIa receptors expressed by natural killer (NK) cells, inhibiting by 93% their ability to mediate HuHMFG1-dependent ADCC against DU145 prostate cancer cells. Of note, the ADCC-inhibitory effect of the same IgG1 molecules was significantly reduced when NK cells expressed phenylalanine-containing FcγRIIIa (93% vs. 50%; P = 0.0000005). These and other findings presented here have important therapeutic implications for the use of anti-MUC1 mAbs in patients with prostate cancer and other MUC1-overexpressing adenocarcinomas.

15.
J Neuroimmunol ; 270(1-2): 95-7, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24662005

RESUMO

Immunoglobulin GM (γ marker) allotypes are strongly associated with neuroblastoma, but the mechanism is not known. One mechanism could involve antibody-dependent cell-mediated cytotoxicity (ADCC) of neuroblastoma cells. Using an ADCC inhibition assay, we show that IgG1 expressing GM 3+,1-,2- allotypes blocked all phenylalanine-expressing FcγRIIIa present on NK cells, resulting in total inhibition of anti-GD2 antibody-mediated ADCC of GD2-overexpressing neuroblastoma cells. In contrast, the inhibitory effect of this protein was significantly lower when the NK cells were homozygous for the valine allele of FcγRIIIa (100 vs. 21%; p=0.00004). These and other findings presented here could lead to a more effective immunotherapy of neuroblastoma.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/genética , Alótipos Gm de Imunoglobulina/genética , Neuroblastoma/genética , Receptores de IgG/genética , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Citotoxicidade Imunológica , Genótipo , Humanos , Neuroblastoma/imunologia
16.
Immunobiology ; 219(2): 113-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24054945

RESUMO

Immunoglobulin κ constant (IGKC) gene has recently been identified as a strong prognostic marker in several human solid tumors, including breast cancer. Although the mechanisms underlying the IGKC signature are not yet known, identification of tumor-infiltrating plasma cells as the source of IGKC expression strongly suggests a role for humoral immunity in breast cancer progression. The primary aim of the present investigation was to determine whether the genetic variants of IGKC, KM (κ marker) allotypes, are risk factors for breast cancer, and whether they influence the magnitude of humoral immunity to epidermal growth factor receptor 2 (HER2), which is overexpressed in 25-30% of breast cancer patients and is associated with poor prognosis. Using a matched case-control design, we genotyped a large (1719 subjects) study population from Japan and Brazil for KM alleles. Both cases and controls in this study population had been previously characterized for GM (γ marker) and Fcγ receptor (FcγR) alleles, and the cases had also been characterized for anti-HER2 antibodies. Conditional logistic regression analysis of the data showed that KM1 allele additively contributed to the risk of breast cancer in the Japanese subjects from Nagano: Compared to KM3 homozygotes, KM1 homozygotes were almost twice as likely to develop breast cancer (OR=1.77, CI 1.06-2.95). Additionally, KM genotypes-individually and in particular epistatic combinations with FcγRIIa genotypes-contributed to the magnitude of anti-HER2 antibody responsiveness in the Japanese patients. This is the first report implicating KM alleles in the immunobiology of breast cancer.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/imunologia , Carcinoma/diagnóstico , Carcinoma/imunologia , Cadeias kappa de Imunoglobulina/genética , Receptores de IgG/genética , Alelos , Antígenos de Neoplasias/imunologia , Brasil , Estudos de Casos e Controles , Feminino , Seguimentos , Estudos de Associação Genética , Genótipo , Humanos , Imunidade Humoral , Japão , Desequilíbrio de Ligação , Polimorfismo Genético , Prognóstico , Receptor ErbB-2/imunologia , Fatores de Risco
17.
PLoS One ; 8(11): e80714, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278309

RESUMO

Cancer is associated with globally hypoacetylated chromatin and considerable attention has recently been focused on epigenetic therapies. N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate and ultimately acetyl-Coenzyme A for histone acetylation, are reduced in oligodendroglioma. The short chain triglyceride glyceryl triacetate (GTA), which increases histone acetylation and inhibits histone deacetylase expression, has been safely used for acetate supplementation in Canavan disease, a leukodystrophy due to ASPA mutation. We demonstrate that GTA induces cytostatic G0 growth arrest of oligodendroglioma-derived cells in vitro, without affecting normal cells. Sodium acetate, at doses comparable to that generated by complete GTA catalysis, but not glycerol also promoted growth arrest, whereas long chain triglycerides promoted cell growth. To begin to elucidate its mechanism of action, the effects of GTA on ASPA and acetyl-CoA synthetase protein levels and differentiation of established human oligodendroglioma cells (HOG and Hs683) and primary tumor-derived oligodendroglioma cells that exhibit some features of cancer stem cells (grade II OG33 and grade III OG35) relative to an oligodendrocyte progenitor line (Oli-Neu) were examined. The nuclear localization of ASPA and acetyl-CoA synthetase-1 in untreated cells was regulated during the cell cycle. GTA-mediated growth arrest was not associated with apoptosis or differentiation, but increased expression of acetylated proteins. Thus, GTA-mediated acetate supplementation may provide a safe, novel epigenetic therapy to reduce the growth of oligodendroglioma cells without affecting normal neural stem or oligodendrocyte progenitor cell proliferation or differentiation.


Assuntos
Acetatos/farmacologia , Antígenos/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Oligodendroglioma/patologia , Proteoglicanas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Acetilação/efeitos dos fármacos , Amidoidrolases/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos , Mesoderma/efeitos dos fármacos , Mesoderma/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/enzimologia , Oligodendroglioma/enzimologia , Fenótipo , Transporte Proteico/efeitos dos fármacos
18.
Hum Immunol ; 74(12): 1656-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23994584

RESUMO

GM and KM allotypes-hereditary antigenic variants of immunoglobulin γ and κ chains, respectively-and the genetic variants of activating Fcγ receptors (FcγR) are associated with the immunobiology of several malignant diseases, but their role in susceptibility to prostate cancer has not been examined. This investigation aimed to determine whether these genes-individually or in particular epistatic combinations-contribute to the risk of prostate cancer. We genotyped DNA from 200 Caucasian patients with prostate cancer and 185 healthy controls (matched for age, race, gender, and geography) for several GM, KM, FcγRIIa, and FcγRIIIa alleles by molecular methods. None of the genotypes by itself was associated with the risk of prostate cancer. However, particular alleles at GM 23 and FcγRIIa loci interactively contributed to the risk of this malignancy (p = 0.031), the odds ratios ranging from 0.44 in subjects homozygous for the GM 23- allele at the IgG2 locus and for the histidine allele at the FcγRIIa locus to 2.86 in subjects homozygous for the GM 23+ allele at the IgG2 locus and the histidine allele at the FcγRIIa locus. To our knowledge, this is the first report implicating GM and FcγR loci as risk/protective factors for prostate cancer. Additional, independent, studies are warranted to confirm and extend these findings.


Assuntos
Epistasia Genética , Loci Gênicos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Neoplasias da Próstata/genética , Receptores de IgG/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Humanos , Alótipos Gm de Imunoglobulina/genética , Alótipos Km de Imunoglobulina/genética , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Razão de Chances , Neoplasias da Próstata/patologia
19.
J Biol Chem ; 288(36): 26188-26200, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23884408

RESUMO

Metabolic reprogramming is a pathological feature of cancer and a driver of tumor cell transformation. N-Acetylaspartate (NAA) is one of the most abundant amino acid derivatives in the brain and serves as a source of metabolic acetate for oligodendrocyte myelination and protein/histone acetylation or a precursor for the synthesis of the neurotransmitter N-acetylaspartylglutamate (NAAG). NAA and NAAG as well as aspartoacylase (ASPA), the enzyme responsible for NAA degradation, are significantly reduced in glioma tumors, suggesting a possible role for decreased acetate metabolism in tumorigenesis. This study sought to examine the effects of NAA and NAAG on primary tumor-derived glioma stem-like cells (GSCs) from oligodendroglioma as well as proneural and mesenchymal glioblastoma, relative to oligodendrocyte progenitor cells (Oli-Neu). Although the NAA dicarboxylate transporter NaDC3 is primarily thought to be expressed by astrocytes, all cell lines expressed NaDC3 and, thus, are capable of NAA up-take. Treatment with NAA or NAAG significantly increased GSC growth and suppressed differentiation of Oli-Neu cells and proneural GSCs. Interestingly, ASPA was expressed in both the cytosol and nuclei of GSCs and exhibited greatest nuclear immunoreactivity in differentiation-resistant GSCs. Both NAA and NAAG elicited the expression of a novel immunoreactive ASPA species in select GSC nuclei, suggesting differential ASPA regulation in response to these metabolites. Therefore, this study highlights a potential role for nuclear ASPA expression in GSC malignancy and suggests that the use of NAA or NAAG is not an appropriate therapeutic approach to increase acetate bioavailability in glioma. Thus, an alternative acetate source is required.


Assuntos
Ácido Aspártico/análogos & derivados , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dipeptídeos/farmacologia , Células-Tronco Neoplásicas/metabolismo , Fármacos Neuroprotetores/farmacologia , Oligodendroglioma/metabolismo , Amidoidrolases/biossíntese , Amidoidrolases/genética , Animais , Ácido Aspártico/farmacologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia , Oligodendroglioma/tratamento farmacológico , Oligodendroglioma/genética , Oligodendroglioma/patologia
20.
Hum Immunol ; 74(8): 1030-3, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23619475

RESUMO

Immunoglobulin GM and KM allotypes-hereditary antigenic determinants of γ and κ chains, respectively-and Fcγ receptor IIa (FcγRIIa) and FcγRIIIa genes are associated with the immunobiology of several malignant diseases, but their role in humoral immunity to the tumor-associated antigen mucin 1 (MUC1) in prostate cancer has not been examined. This investigation aimed to determine whether these genes-individually or in particular epistatic combinations-contribute to the inter-individual variability in the magnitude of antibody responsiveness to MUC1 in patients with prostate cancer. We genotyped DNA from 127 Caucasian American (CA) and 76 African American (AA) patients with histologically verified adenocarcinoma of the prostate for several GM, KM, FcγRIIa, and FcγRIIIa alleles by molecular methods. We also quantitated antibodies to MUC1 in the plasma from these patients by ELISA. In CA patients, homozygosity for the valine allele at the FcγRIIIa locus was significantly associated with low antibody responsiveness to MUC1 (p=0.029). In AA patients, the KM 1/3 heterozygotes had significantly higher anti-MUC1 antibody levels than 1/1 and 3/3 homozygotes (p=0.044). These results, the first to implicate FcγRIIIa and KM loci in humoral immunity to MUC1 in prostate cancer, might be relevant to MUC1-based immunotherapy of this malignancy.


Assuntos
Imunidade Humoral , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Mucina-1/imunologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Receptores de IgG/genética , Adulto , Negro ou Afro-Americano/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Genótipo , Humanos , Imunoglobulina G/sangue , Alótipos Gm de Imunoglobulina/genética , Alótipos Km de Imunoglobulina/genética , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias da Próstata/patologia , População Branca/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA