Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Transl Med ; 12(12): e1068, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36504430

RESUMO

BACKGROUND: Cytotoxic T lymphocytes take on a leading role in many immune-related diseases. They function as key effector immune cells fighting cancer cells, but they are also considerably involved in autoimmune diseases. Common to both situations, CD8+ T cells need to adapt their metabolism and effector function to the harsh and nutrient-deprived conditions of the disease-associated microenvironment. METHODS: We used an in vitro starvation as well as rapamycin treatment protocol mimicking nutrient deprivation to generate CD8Low versus CD8High T cells and performed FACS-Sorting followed by transcriptomic profiling of the cytotoxic T cell subsets. Prominent markers identified in the CD8Low versus the CD8High T cells were then used to investigate the presence of these cell subsets in immune-related human diseases. Employing cancer tissue microarrays and PhenOptics multispectral imaging as well as flow cytometry, we studied these CD8+ T cell subsets in cancer and relapsing-remitting multiple sclerosis patients. RESULTS: Starvation induced a decreased expression of CD8, yielding a CD8Low T cell subpopulation with an altered transcriptomic signature and reduced effector function. CD8Low T cell showed enhanced ST2L and IL6ST (CD130) expression compared to CD8High T cells which expressed elevated KLRD1 (CD94) and granzyme B levels within the tumour microenvironment (TME). Spatial analysis revealed the presence of CD8High T cells in close proximity to tumour cells, while the CD8Low T cells resided at the tumour boundaries. Importantly, the number of tumour-infiltrating CD8Low T lymphocytes correlated with a poor prognosis as well as with enhanced cancer progression in human mammary carcinoma. We also found a reduced frequency of CD8Low T lymphocytes in a cohort of relapse (disease active) multiple sclerosis patients compared to healthy subjects during immune cell starvation in vitro. CONCLUSIONS: In summary, our data show that functionally distinct cytotoxic T lymphocytes can be identified based on their expression of CD8. Indicating a more general role in CD8 T cell immunity, these cells may play opposing roles in the TME, and also in the pathophysiology of autoimmune diseases such as multiple sclerosis.


Assuntos
Doenças Autoimunes , Esclerose Múltipla , Humanos , Linfócitos T Citotóxicos , Esclerose Múltipla/genética , Linfócitos T CD8-Positivos , Recidiva Local de Neoplasia , Microambiente Tumoral/genética
2.
Front Immunol ; 13: 906127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439127

RESUMO

ATP-citrate lyase (ACLY) is a key enzyme provoking metabolic and epigenetic gene regulation. Molecularly, these functions are exerted by the provision of acetyl-coenzyme A, which is then used as a substrate for de novo lipogenesis or as an acetyl-group donor in acetylation reactions. It has been demonstrated that ACLY activity can be positively regulated via phosphorylation at serine 455 by Akt and protein kinase A. Nonetheless, the impact of phosphorylation on ACLY function in human myeloid cells is poorly understood. In this study we reconstituted ACLY knockout human monocytic THP-1 cells with a wild type ACLY as well as catalytically inactive H760A, and phosphorylation-deficient S455A mutants. Using these cell lines, we determined the impact of ACLY activity and phosphorylation on histone acetylation and pro-inflammatory gene expression in response to lipopolysaccharide (LPS). Our results show that ACLY serine 455 phosphorylation does not influence the proper enzymatic function of ACLY, since both, wild type ACLY and phosphorylation-deficient mutant, exhibited increased cell growth and histone acetylation as compared to cells with a loss of ACLY activity. Transcriptome analysis revealed enhanced expression of pro-inflammatory and interferon response genes in ACLY knockout and H760A THP-1 cells under unstimulated or LPS-treated conditions. At the same time, S455A ACLY-expressing cells showed a phenotype very similar to wild type cells. Contrary to ACLY knockout, pharmacological inhibition of ACLY in THP-1 cells or in primary human macrophages does not enhance LPS-triggered pro-inflammatory gene expression. Our data thus suggest that ACLY retains functionality in the absence of Akt/PKA-mediated phosphorylation in human myeloid cells. Furthermore, loss of ACLY activity may elicit long-term adaptive mechanisms, increasing inflammatory responses.


Assuntos
Histonas , Serina , Humanos , Acetilação , Fosforilação , Células THP-1 , Histonas/metabolismo , Serina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipopolissacarídeos/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Cell Death Discov ; 8(1): 327, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853860

RESUMO

Compared to cancer cells, macrophages are inert to lipid peroxidation-triggered, iron-dependent cell death known as ferroptosis. Mechanisms underlying macrophage resistance towards ferroptosis are largely obscure. Here, we show that human primary macrophages respond to RSL3, a ferroptosis-inducing inhibitor of glutathione peroxidase 4, by upregulating mRNA expression of the iron transporter ferroportin. RSL3 induces lipid peroxidation, and both, lipid peroxidation as well as ferroportin induction were attenuated by liproxstatin-1, an inhibitor of lipid peroxidation and ferroptosis blocker. At the same time, system xc- inhibitor erastin fails to elicit lipid peroxidation or ferroportin expression. Ferroportin induction in response to RSL3 demands nuclear accumulation of the redox-sensitive transcription factor Nrf2 and downregulation of the transcriptional repressor BACH1. Silencing ferroportin or Nrf2 increases the cellular labile iron pool and lipid peroxidation, thereby sensitizing cells towards ferroptosis following RSL3 treatments. In contrast, silencing BACH1 decreases the labile iron pool and lipid peroxidation, enhancing macrophage resistance towards ferroptosis. Our findings reveal Nrf2, BACH1, and ferroportin as important regulators, protecting human macrophages against ferroptosis.

4.
J Med Chem ; 64(23): 17259-17276, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34818007

RESUMO

Polypharmaceutical regimens often impair treatment of patients with metabolic syndrome (MetS), a complex disease cluster, including obesity, hypertension, heart disease, and type II diabetes. Simultaneous targeting of soluble epoxide hydrolase (sEH) and peroxisome proliferator-activated receptor γ (PPARγ) synergistically counteracted MetS in various in vivo models, and dual sEH inhibitors/PPARγ agonists hold great potential to reduce the problems associated with polypharmacy in the context of MetS. However, full activation of PPARγ leads to fluid retention associated with edema and weight gain, while partial PPARγ agonists do not have these drawbacks. In this study, we designed a dual partial PPARγ agonist/sEH inhibitor using a structure-guided approach. Exhaustive structure-activity relationship studies lead to the successful optimization of the designed lead. Crystal structures of one representative compound with both targets revealed potential points for optimization. The optimized compounds exhibited favorable metabolic stability, toxicity, selectivity, and desirable activity in adipocytes and macrophages.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , PPAR gama/agonistas , Animais , Cristalografia por Raios X , Células HEK293 , Humanos , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Polimedicação , Ratos , Relação Estrutura-Atividade
5.
Front Immunol ; 12: 723683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456930

RESUMO

Mitofusin 2 (MFN2) is a mitochondrial outer membrane GTPase, which modulates mitochondrial fusion and affects the interaction between endoplasmic reticulum and mitochondria. Here, we explored how MFN2 influences mitochondrial functions and inflammatory responses towards zymosan in primary human macrophages. A knockdown of MFN2 by small interfering RNA decreased mitochondrial respiration without attenuating mitochondrial membrane potential and reduced interactions between endoplasmic reticulum and mitochondria. A MFN2 deficiency potentiated zymosan-elicited inflammatory responses of human primary macrophages, such as expression and secretion of pro-inflammatory cytokines interleukin-1ß, -6, -8 and tumor necrosis factor α, as well as induction of cyclooxygenase 2 and prostaglandin E2 synthesis. MFN2 silencing also increased zymosan-induced nuclear factor kappa-light-chain-enhancer of activated B cells and mitogen-activated protein kinases inflammatory signal transduction, without affecting mitochondrial reactive oxygen species production. Mechanistic studies revealed that MFN2 deficiency enhanced the toll-like receptor 2-dependent branch of zymosan-triggered responses upstream of inhibitor of κB kinase. This was associated with elevated, cytosolic expression of interleukin-1 receptor-associated kinase 4 in MFN2-deficient cells. Our data suggest pro-inflammatory effects of MFN2 deficiency in human macrophages.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Proteínas Mitocondriais/metabolismo , Transdução de Sinais/fisiologia , Citocinas/metabolismo , Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/deficiência , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Front Immunol ; 12: 637778, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025647

RESUMO

Efferocytosis is critical for tissue homeostasis, as its deregulation is associated with several autoimmune pathologies. While engulfing apoptotic cells, phagocytes activate transcription factors, such as peroxisome proliferator-activated receptors (PPAR) or liver X receptors (LXR) that orchestrate metabolic, phagocytic, and inflammatory responses towards the ingested material. Coordination of these transcription factors in efferocytotic human macrophages is not fully understood. In this study, we evaluated the transcriptional profile of macrophages following the uptake of apoptotic Jurkat T cells using RNA-seq analysis. Results indicated upregulation of PPAR and LXR pathways but downregulation of sterol regulatory element-binding proteins (SREBP) target genes. Pharmacological inhibition and RNA interference pointed to LXR and PPARδ as relevant transcriptional regulators, while PPARγ did not substantially contribute to gene regulation. Mechanistically, lysosomal digestion and lysosomal acid lipase (LIPA) were required for PPAR and LXR activation, while PPARδ activation also demanded an active lysosomal phospholipase A2 (PLA2G15). Pharmacological interference with LXR signaling attenuated ABCA1-dependent cholesterol efflux from efferocytotic macrophages, but suppression of inflammatory responses following efferocytosis occurred independently of LXR and PPARδ. These data provide mechanistic details on LXR and PPARδ activation in efferocytotic human macrophages.


Assuntos
Apoptose/fisiologia , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , PPAR gama/metabolismo , Fagocitose/fisiologia , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Aciltransferases/metabolismo , Linhagem Celular Tumoral , Colesterol/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Células Jurkat , Receptores X do Fígado/genética , Lisossomos/metabolismo , PPAR gama/genética , Fosfolipases A2/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Transcrição Gênica/genética , Transcriptoma/genética
7.
Cancers (Basel) ; 13(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668835

RESUMO

The transcription factor p53 has well-recognized roles in regulating cell cycle, DNA damage repair, cell death, and metabolism. It is an important tumor suppressor and pharmacological activation of p53 by interrupting its interaction with the ubiquitin E3 ligase mouse double minute 2 homolog (MDM2) is actively explored for anti-tumor therapies. In immune cells, p53 modulates inflammatory responses, but the impact of p53 on macrophages remains incompletely understood. In this study, we used the MDM2 antagonist idasanutlin (RG7388) to investigate the responses of primary human macrophages to pharmacological p53 activation. Idasanutlin induced a robust p53-dependent transcriptional signature in macrophages, including several pro-apoptotic genes. However, idasanutlin did not generally sensitize macrophages to apoptosis, except for an enhanced response to a Fas-stimulating antibody. In fully differentiated macrophages, idasanutlin did not affect pro-inflammatory gene expression induced by toll-like receptor 4 (TLR4), TLR3, and TLR7/8 agonists, but inhibited interleukin-4-induced macrophage polarization. However, when present during monocyte to macrophage differentiation, idasanutlin attenuated inflammatory responses towards activation of TLR4 and TLR7/8 by low doses of lipopolysaccharide or resiquimod (R848). This was accompanied by a reduced expression of CD14, TLR7, and TLR8 in macrophages differentiated in the presence of idasanutlin. Our data suggest anti-inflammatory effects of pharmacological p53 activation in differentiating human macrophages.

8.
Cell Death Differ ; 28(4): 1301-1316, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33177619

RESUMO

Macrophages acquire anti-inflammatory and proresolving functions to facilitate resolution of inflammation and promote tissue repair. While alternatively activated macrophages (AAMs), also referred to as M2 macrophages, polarized by type 2 (Th2) cytokines IL-4 or IL-13 contribute to the suppression of inflammatory responses and play a pivotal role in wound healing, contemporaneous exposure to apoptotic cells (ACs) potentiates the expression of anti-inflammatory and tissue repair genes. Given that liver X receptors (LXRs), which coordinate sterol metabolism and immune cell function, play an essential role in the clearance of ACs, we investigated whether LXR activation following engulfment of ACs selectively potentiates the expression of Th2 cytokine-dependent genes in primary human AAMs. We show that AC uptake simultaneously upregulates LXR-dependent, but suppresses SREBP-2-dependent gene expression in macrophages, which are both prevented by inhibiting Niemann-Pick C1 (NPC1)-mediated sterol transport from lysosomes. Concurrently, macrophages accumulate sterol biosynthetic intermediates desmosterol, lathosterol, lanosterol, and dihydrolanosterol but not cholesterol-derived oxysterols. Using global transcriptome analysis, we identify anti-inflammatory and proresolving genes including interleukin-1 receptor antagonist (IL1RN) and arachidonate 15-lipoxygenase (ALOX15) whose expression are selectively potentiated in macrophages upon concomitant exposure to ACs or LXR agonist T0901317 (T09) and Th2 cytokines. We show priming macrophages via LXR activation enhances the cellular capacity to synthesize inflammation-suppressing specialized proresolving mediator (SPM) precursors 15-HETE and 17-HDHA as well as resolvin D5. Silencing LXRα and LXRß in macrophages attenuates the potentiation of ALOX15 expression by concomitant stimulation of ACs or T09 and IL-13. Collectively, we identify a previously unrecognized mechanism of regulation whereby LXR integrates AC uptake to selectively shape Th2-dependent gene expression in AAMs.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Colesterol/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Araquidonato 15-Lipoxigenase/genética , Citocinas/genética , Citocinas/metabolismo , Fluorocarbonos/farmacologia , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Fagocitose , Ligação Proteica , RNA Interferente Pequeno/genética , Sulfonamidas/farmacologia
9.
Cells ; 8(10)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581537

RESUMO

Inflammatory activation of astroglia adds to the pathology of various neurological diseases. Astrocytes respond to microglia-derived cytokines such as interleukin-1α (IL-1α) with enhanced inflammatory signaling. This provokes pro-inflammatory gene expression of, among others, the eicosanoid-generating enzyme prostaglandin endoperoxide synthase 2 (Ptgs2). Whereas metabolic regulation of innate immune cell inflammatory responses is intensely studied, pathways related to how metabolism modulates inflammatory signaling in astrocytes are underexplored. Here, we examined how mitochondrial oxidative phosphorylation affects inflammatory responses towards IL-1α and tumor necrosis factor α in neonatal rat astrocytes. Blocking respiratory complex I and III or adenosine triphosphate (ATP) synthase did not affect activation of inflammatory signaling by IL-1α, but did elicit differential effects on inflammatory gene mRNA expression. Remarkably, mRNA and protein expression of Ptgs2 by IL-1α was consistently up-regulated when oxidative phosphorylation was inhibited. The increase of Ptgs2 resulted from mRNA stabilization. Mitochondrial inhibitors also increased IL-1α-triggered secretion of eicosanoids, such as prostaglandin E2, prostaglandin F2α, and 6-keto-prostaglandin F1α, as assessed by liquid chromatography/mass spectrometry. Mechanistically, attenuating oxidative phosphorylation elevated adenosine monophosphate (AMP) and activated AMP-activated protein kinase (AMPK). AMPK silencing prevented Ptgs2 up-regulation by mitochondrial inhibitors, while AMPK activators recapitulated Ptgs2 mRNA stability regulation. Our data indicate modulation of astrocyte inflammatory responses by oxidative metabolism, with relevance towards eicosanoid production.


Assuntos
Astrócitos/metabolismo , Inflamação/metabolismo , Interleucina-1alfa/metabolismo , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Astrócitos/patologia , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Regulação da Expressão Gênica , Fosforilação Oxidativa , RNA Mensageiro/metabolismo , Ratos
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(9): 1235-1246, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31128248

RESUMO

Sphingosine kinases (SPHK) generate the sphingolipid sphingosine-1-phosphate, which, among other functions, is a potent regulator of inflammation. While SPHK1 produces S1P to promote inflammatory signaling, the role of SPHK2 is unclear due to divergent findings in studies utilizing gene depletion versus inhibition of catalytic activity. We sought to clarify how SPHK2 affects inflammatory signaling in human macrophages, which are main regulators of inflammation. SPHK2 expression and activity were rapidly decreased within 6 h upon stimulating primary human macrophages with lipopolysaccharide (LPS), but was upregulated after 24 h. At 24 h following LPS stimulation, targeting SPHK2 with the inhibitor ABC294640, a specific siRNA or by using Sphk2-/- mouse peritoneal macrophages increased inflammatory cytokine production. Downregulation of SPHK2 in primary human macrophages within 6 h of LPS treatment was blocked by inhibiting autophagy. SPHK2 overexpression or inhibiting autophagy 6 h after human macrophage activation with LPS suppressed inflammatory cytokine release. Mechanistically, SPHK2 suppressed LPS-triggered NF-κB activation independent of its catalytic activity and prevented increased mitochondrial ROS formation downstream of LPS. In conclusion, SPHK2 is an anti-inflammatory protein in human macrophages that is inversely coupled to inflammatory cytokine production. This needs consideration when targeting SPHK2 with specific inhibitors.


Assuntos
Inflamação/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Fosfotransferases (Aceptor do Grupo Álcool)/imunologia , Autofagia , Células Cultivadas , Citocinas/imunologia , Feminino , Humanos , Masculino
11.
Front Immunol ; 9: 2858, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568658

RESUMO

Macrophages exposed to the Th2 cytokines interleukin (IL) IL-4 and IL-13 exhibit a distinct transcriptional response, commonly referred to as M2 polarization. Recently, IL-4-induced polarization of murine bone marrow-derived macrophages (BMDMs) has been linked to acetyl-CoA levels through the activity of the cytosolic acetyl-CoA-generating enzyme ATP-citrate lyase (ACLY). Here, we studied how ACLY regulated IL-4-stimulated gene expression in human monocyte-derived macrophages (MDMs). Although multiple ACLY inhibitors attenuated IL-4-induced target gene expression, this effect could not be recapitulated by silencing ACLY expression. Furthermore, ACLY inhibition failed to alter cellular acetyl-CoA levels and histone acetylation. We generated ACLY knockout human THP-1 macrophages using CRISPR/Cas9 technology. While these cells exhibited reduced histone acetylation levels, IL-4-induced gene expression remained intact. Strikingly, ACLY inhibitors still suppressed induction of target genes by IL-4 in ACLY knockout cells, suggesting off-target effects of these drugs. Our findings suggest that ACLY may not be the major regulator of nucleocytoplasmic acetyl-CoA and IL-4-induced polarization in human macrophages. Furthermore, caution should be warranted in interpreting the impact of pharmacological inhibition of ACLY on gene expression.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Interleucina-4/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/imunologia , Acetilcoenzima A/metabolismo , Acetilação/efeitos dos fármacos , Buffy Coat/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Interleucina-4/imunologia , Macrófagos/enzimologia , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Células THP-1
12.
Oncoimmunology ; 7(10): e1494110, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288360

RESUMO

Macrophages in the tumor microenvironment respond to complex cytokine signals. How these responses shape the phenotype of tumor-associated macrophages (TAMs) is incompletely understood. Here we explored how cytokines of the tumor milieu, interleukin (IL)-6 and IL-4, interact to influence target gene expression in primary human monocyte-derived macrophages (hMDMs). We show that dual stimulation with IL-4 and IL-6 synergistically modified gene expression. Among the synergistically induced genes are several targets with known pro-tumorigenic properties, such as CC-chemokine ligand 18 (CCL18), transforming growth factor alpha (TGFA) or CD274 (programmed cell death 1 ligand 1 (PD-L1)). We found that transcription factors of the signal transducer and activator of transcription (STAT) family, STAT3 and STAT6 bind regulatory regions of synergistically induced genes in close vicinity. STAT3 and STAT6 co-binding further induces the basic leucine zipper ATF-like transcription factor (BATF), which participates in synergistic induction of target gene expression. Functional analyses revealed increased MCF-7 and MDA-MB 231 tumor cell motility in response to conditioned media from co-treated hMDMs compared to cells incubated with media from single cytokine-treated hMDMs. Flow cytometric analysis of T cell populations upon co-culture with hMDMs polarized by different cytokines indicated that dual stimulation promoted immunosuppressive properties of hMDMs in a PD-L1-dependent manner. Analysis of clinical data revealed increased expression of BATF together with TAM markers in tumor stroma of breast cancer patients as compared to normal breast tissue stroma. Collectively, our findings suggest that IL-4 and IL-6 cooperate to alter the human macrophage transcriptome, endowing hMDMs with pro-tumorigenic properties.

13.
Front Immunol ; 9: 1906, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30197642

RESUMO

Arachidonate 15-lipoxygenase (ALOX15) and arachidonate 15-lipoxygenase, type B (ALOX15B) catalyze the dioxygenation of polyunsaturated fatty acids and are upregulated in human alternatively activated macrophages (AAMs) induced by Th2 cytokine interleukin-4 (IL-4) and/or interleukin-13. Known primarily for roles in bioactive lipid mediator synthesis, 15-lipoxygenases (15-LOXs) have been implicated in various macrophage functions including efferocytosis and ferroptosis. Using a combination of inhibitors and siRNAs to suppress 15-LOX isoforms, we studied the role of 15-LOXs in cellular cholesterol homeostasis and immune function in naïve and AAMs. Silencing or inhibiting the 15-LOX isoforms impaired sterol regulatory element binding protein (SREBP)-2 signaling by inhibiting SREBP-2 processing into mature transcription factor and reduced SREBP-2 binding to sterol regulatory elements and subsequent target gene expression. Silencing ALOX15B reduced cellular cholesterol and the cholesterol intermediates desmosterol, lanosterol, 24,25-dihydrolanosterol, and lathosterol as well as oxysterols in IL-4-stimulated macrophages. In addition, attenuating both 15-LOX isoforms did not generally affect IL-4 gene expression but rather uniquely impacted IL-4-induced CCL17 production in an SREBP-2-dependent manner resulting in reduced T cell migration to macrophage conditioned media. In conclusion, we identified a novel role for ALOX15B, and to a lesser extent ALOX15, in cholesterol homeostasis and CCL17 production in human macrophages.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Quimiocina CCL17/biossíntese , Colesterol/metabolismo , Homeostase , Macrófagos/imunologia , Macrófagos/metabolismo , Araquidonato 15-Lipoxigenase/genética , Movimento Celular/genética , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Ligação Proteica , RNA Interferente Pequeno/genética , Elemento de Resposta Sérica , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
14.
Sci Rep ; 8(1): 7801, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773845

RESUMO

5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) is an established pharmacological activator of AMP-activated protein kinase (AMPK). Both, AICAR and AMPK were reported to attenuate inflammation. However, AICAR is known for many AMPK-independent effects, although the mechanisms remain incompletely understood. Here we report a potent suppression of lipopolysaccharide (LPS)-induced inflammatory gene expression by AICAR in primary human macrophages, which occurred independently of its conversion to AMPK-activating 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranosyl monophosphate. Although AICAR did not interfere with activation of cytosolic signalling cascades and nuclear translocation of nuclear factor - κB (NFκB) by LPS, it prevented the recruitment of NFκB and RNA polymerase II to target gene promoters. AICAR also inhibited signal transducer and activator of transcription 3 (STAT3)-dependent induction of interleukin (IL) IL-6 and IL-10 targets, while leaving STAT6 and HIF1α-dependent gene expression in IL-4 and dimethyloxalylgylcine-treated macrophages intact. This points to a transcription factor-specific mode of action. Attenuated gene expression correlated with impaired NFκB and STAT3, but not HIF-binding in electrophoretic mobility shift assays in vitro. Conclusively, AICAR interferes with DNA binding of NFκB and STAT3 to modulate inflammatory responses.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Macrófagos/efeitos dos fármacos , Ribonucleotídeos/farmacologia , Aminoimidazol Carboxamida/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipopolissacarídeos , Macrófagos/imunologia , Macrófagos/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo
15.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(4): 433-446, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29360568

RESUMO

Macrophages in adipose tissue contribute to inflammation and the development of insulin resistance in obesity. Exposure of macrophages to saturated fatty acids alters cell metabolism and activates pro-inflammatory signaling. How fatty acids influence macrophage mitochondrial dynamics is unclear. We investigated the mechanism of palmitate-induced mitochondrial fragmentation and its impact on inflammatory responses in primary human macrophages. Fatty acids, such as palmitate, caused mitochondrial fragmentation in human macrophages. Increased mitochondrial fragmentation was also observed in peritoneal macrophages from hyperlipidemic apolipoprotein E knockout mice. Fatty acid-induced mitochondrial fragmentation was independent of the fatty acid chain saturation and required dynamin-related protein 1 (DRP1). Mechanistically, mitochondrial fragmentation was regulated by incorporation of palmitate into mitochondrial phospholipids and their precursors. Palmitate-induced endoplasmic reticulum stress and loss of mitochondrial membrane potential did not contribute to mitochondrial fragmentation. Macrophages treated with palmitate maintained intact mitochondrial respiration and ATP levels. Pharmacological or genetic inhibition of DRP1 enhanced palmitate-induced mitochondrial ROS production, c-Jun phosphorylation, and inflammatory cytokine expression. Our results indicate that mitochondrial fragmentation is a protective mechanism attenuating inflammatory responses induced by palmitate in human macrophages.


Assuntos
Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Mitocôndrias/metabolismo , Palmitatos/toxicidade , Animais , Linhagem Celular , Dinaminas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo
16.
Curr Opin Pharmacol ; 35: 12-19, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28538141

RESUMO

Tumors are composed of tumor cells, nonmalignant cells, and the vascular system. Among them is intense communication via cell-cell contact-dependent mechanisms and/or soluble messengers. In the tumor microenvironment cells often face a certain degree of oxygen and nutrient deprivation. Hypoxic stress alters the metabolism of tumor cells but also of macrophages, as one dominating immune cell population in most solid tumors, with subsequent changes in the microenvironment. This alters the phenotype and metabolism of macrophages, to induce a tumor-promoting reprogramming. Nutrient stress also provokes autophagy to guarantee cell survival or, if overwhelmed, to exit toward cell demise. Death of tumor cells turned out as a communicative system attracting macrophages and directing their phenotype. Depending on the mode of tumor cell death macrophage polarization ranges from the extremes of pro-inflammatory activation toward anti-inflammatory/immuno-suppressive activation. Here we discuss how hypoxia and cell death adds the cross-talk between cancer cells and macrophages.


Assuntos
Hipóxia/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Animais , Morte Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
17.
Biochim Biophys Acta ; 1861(11): 1796-1807, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27614008

RESUMO

Recent research considerably changed our knowledge how cellular metabolism affects the immune system. We appreciate that metabolism not only provides energy to immune cells, but also actively influences diverse immune cell phenotypes. Fatty acid metabolism, particularly mitochondrial fatty acid oxidation (FAO) emerges as an important regulator of innate and adaptive immunity. Catabolism of fatty acids also modulates the progression of disease, such as the development of obesity-driven insulin resistance and type II diabetes. Here, we summarize (i) recent developments in research how FAO modulates inflammatory signatures in macrophages in response to saturated fatty acids, and (ii) the role of FAO in regulating anti-inflammatory macrophage polarization. In addition, we define the contribution of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptors (PPARs), in controlling macrophage biology towards fatty acid metabolism and inflammation.


Assuntos
Polaridade Celular , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Animais , Humanos , Modelos Biológicos , Oxirredução
18.
Sci Rep ; 6: 32111, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27562249

RESUMO

Obesity-associated insulin resistance is driven by inflammatory processes in response to metabolic overload. Obesity-associated inflammation can be recapitulated in cell culture by exposing macrophages to saturated fatty acids (SFA), and endoplasmic reticulum (ER) stress responses essentially contribute to pro-inflammatory signalling. AMP-activated protein kinase (AMPK) is a central metabolic regulator with established anti-inflammatory actions. Whether pharmacological AMPK activation suppresses SFA-induced inflammation in a human system is unclear. In a setting of hypoxia-potentiated inflammation induced by SFA palmitate, we found that the AMP-mimetic AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) potently suppressed upregulation of ER stress marker mRNAs and pro-inflammatory cytokines. Furthermore, AICAR inhibited macrophage ER stress responses triggered by ER-stressors thapsigargin or tunicamycin. Surprisingly, AICAR acted independent of AMPK or AICAR conversion to 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranosyl monophosphate (ZMP) while requiring intracellular uptake via the equilibrative nucleoside transporter (ENT) ENT1 or the concentrative nucleoside transporter (CNT) CNT3. AICAR did not affect the initiation of the ER stress response, but inhibited the expression of major ER stress transcriptional effectors. Furthermore, AICAR inhibited autophosphorylation of the ER stress sensor inositol-requiring enzyme 1α (IRE1α), while activating its endoribonuclease activity in vitro. Our results suggest that AMPK-independent inhibition of ER stress responses contributes to anti-inflammatory and anti-diabetic effects of AICAR.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Macrófagos/metabolismo , Ribonucleotídeos/farmacologia , Aminoimidazol Carboxamida/farmacologia , Citocinas/metabolismo , Endorribonucleases/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Proteínas de Membrana Transportadoras/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo
19.
Int J Biochem Cell Biol ; 78: 1-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27343431

RESUMO

ATP-binding cassette transporter A1 (ABCA1) is a key modulator of macrophage cholesterol homeostasis. We studied the impact of AMP-activated protein kinase (AMPK) on ABCA1 expression in primary human and THP-1 macrophages. Pharmacological or genetic activation of AMPK increased mRNA and protein expression of ABCA1 and its transcriptional activator liver X receptor (LXR) α, resulting in increased cholesterol efflux to apolipoprotein AI-containing medium. On the other side, an AMPK knockdown decreased ABCA1 and LXRα mRNA and protein. Silencing LXRα, but not LXRß, attenuated ABCA1 expression after AMPK activation, and luciferase reporter as well as chromatin immunoprecipitation analyses showed the binding of LXRα to the LXR responsive element in the ABCA1 promoter. Inhibition of extracellular-signal regulated kinase and mechanistic target of rapamycin signalling increased ABCA1 expression, at the same time making it unresponsive to AMPK activation. Considering other potential regulators of ABCA1 expression, we excluded histone deacetylase HDAC9 and FOXO3 involvement in mediating AMPK effects on ABCA1. Our data link AMPK activation to an increased cholesterol efflux capacity of macrophages, suggesting an atheroprotective effect of macrophage AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Regulação da Expressão Gênica , Receptores X do Fígado/genética , Macrófagos/metabolismo , Transporte Biológico , Colesterol/metabolismo , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Hep G2 , Histona Desacetilases/metabolismo , Humanos , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/metabolismo , Serina-Treonina Quinases TOR/metabolismo
20.
Stem Cells ; 34(8): 2236-48, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27145479

RESUMO

Administration of bone marrow-derived mononuclear cells (BMC) may increase cardiac function after myocardial ischemia. However, the functional capacity of BMC derived from chronic heart failure (CHF) patients is significantly impaired. As modulation of the energy metabolism allows cells to match the divergent demands of the environment, we examined the regulation of energy metabolism in BMC from patients and healthy controls (HC). The glycolytic capacity of CHF-derived BMC is reduced compared to HC, whereas BMC of metabolically activated bone marrow after acute myocardial infarction reveal increased metabolism. The correlation of metabolic pathways with the functional activity of cells indicates an influence of metabolism on cell function. Reducing glycolysis without profoundly affecting ATP-production reversibly reduces invasion as well as colony forming capacity and abolishes proliferation of CD34(+) CD38(-) lin(-) hematopoietic stem and progenitor cells (HSPC). Ex vivo inhibition of glycolysis further reduced the pro-angiogenic activity of transplanted cells in a hind limb ischemia model in vivo. In contrast, inhibition of respiration, without affecting total ATP production, leads to a compensatory increase in glycolytic capacity correlating with increased colony forming capacity. Isolated CD34(+) , CXCR4(+) , and CD14(+) cells showed higher glycolytic activity compared to their negative counterparts. Metabolic activity was profoundly modulated by the composition of media used to store or culture BMC. This study provides first evidence that metabolic alterations influence the functional activity of human HSPC and BMC independent of ATP production. Changing the balance between respiration and glycolysis might be useful to improve patient-derived cells for clinical cardiac cell therapy. Stem Cells 2016;34:2236-2248.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Insuficiência Cardíaca/terapia , Isquemia Miocárdica/terapia , Animais , Respiração Celular , Ensaio de Unidades Formadoras de Colônias , Meios de Cultura , Glicólise , Insuficiência Cardíaca/patologia , Membro Posterior/irrigação sanguínea , Membro Posterior/patologia , Humanos , Metabolômica , Camundongos Nus , MicroRNAs/metabolismo , Isquemia Miocárdica/patologia , Neovascularização Fisiológica , Fator de Transcrição STAT5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA