Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Prev Res (Phila) ; 12(4): 225-236, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30760502

RESUMO

The rate of lung cancer incidence is alarmingly mounting, despite the decline of smoking and tobacco consumption. Recent reports indicate a very high correlation between the growing fast food culture and lung cancer incidence. Benzo[a]pyrene (B[a]P) is a potent carcinogen abundantly present in grilled and deep-fried food and in tobacco smoke. Our previous studies have proved the efficacy of curcumin in curbing B[a]P-induced lung carcinogenesis. However, the poor pharmacokinetic profile of the compound considerably hampers its potential as an effective chemopreventive. This study was intended to evaluate whether encapsulation of curcumin in chitosan nanoparticles can improve the cellular uptake and prolong the tissue retention of curcumin yielding better chemoprevention. The curcumin-loaded chitosan nanoparticles (chitosan nanocurcumin) exhibited a size of 170-200 nm in transmission electron microscopy. In vitro drug release studies showed sustained release of curcumin over a period of approximately 180 hours and excellent intracellular uptake and cytotoxicity in lung cancer cells. Bioavailability studies using healthy Swiss albino mice demonstrated drastic enhancement in lung localization of chitosan nanocurcumin compared with free curcumin. Toxicologic evaluation using chronic toxicity model in Swiss albino mice confirmed the pharmacologic safety of the formulation. Moreover, the formulation, even at a dose equivalent to one fourth that of free curcumin, exhibits better efficacy in reducing tumor incidence and multiplicity than free curcumin, thereby hampering development of B[a]P-induced lung adenocarcinomas in Swiss albino mice. Hence, our study underscores the supremacy of the formulation over free curcumin and establishes it as a potential chemopreventive and oral supplement against environmental carcinogenesis.


Assuntos
Antineoplásicos/farmacologia , Benzo(a)pireno/toxicidade , Quitosana/química , Curcumina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/administração & dosagem , Animais , Antineoplásicos/química , Disponibilidade Biológica , Curcumina/química , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Nanopartículas/química
2.
Oncotarget ; 8(64): 107374-107389, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29296172

RESUMO

Nanoencapsulation has emerged as a novel strategy to enhance the pharmacokinetic and therapeutic potential of conventional drugs. Recent studies from our lab have established the efficacy of curcumin in sensitizing cervical cancer cells and breast cancer cells towards paclitaxel and 5-FU chemotherapy respectively. Factors that hinder the clinical use of curcumin as a sensitizer or therapeutic agent include its poor bioavailability and retention time. Earlier reports of improvement in bioavailability and retention of drugs upon nanoencapsulation have motivated us in developing various nanoformulations of curcumin, which were found to exhibit significant enhancement in bioavailability and retention time as assessed by our previous in vitro studies. Among the various formulations tested, curcumin-entrapped in PLGA-PEG nanoparticles conjugated to folic acid (PPF-curcumin) displayed maximum cell death. In the present study, we have demonstrated the efficacy of this formulation in augmenting the bioavailability and retention time of curcumin, in vivo, in Swiss albino mice. Further, the acute and chronic toxicity studies proved that the formulation is pharmacologically safe. We have also evaluated its potential in chemosensitizing cervical cancer cells to paclitaxel and have verified the results using cervical cancer xenograft model in NOD-SCID mice. Folic acid conjugation significantly enhanced the efficacy of curcumin in down-regulating various survival signals induced by paclitaxel in cervical cancer cells and have considerably improved its potential in inhibiting the tumor growth of cervical cancer xenografts. The non-toxic nature coupled with improved chemosensitization potential makes PPF-curcumin a promising candidate formulation for clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA