Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Placenta ; 116: 12-30, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33958236

RESUMO

Placenta in certain species including the human has evolved as a highly invasive tumor-like organ invading the uterus aned its vasculature to derive oxygen and nutrients for the fetus and exchange waste products. While several excellent reviews have been written comparing hemochorial placentation with tumors, no comprehensive review is available dealing with mechanistic insights into what makes them different, and what tumor biologists can learn from placental biologists, and vice versa. In this review, we analyze the structure-function relationship of the human placenta, emphasizing the functional need of the spatio-temporally orchestrated trophoblast invasiveness for fetal development and growth, and pathological consequences of aberrant invasiveness for fetal and maternal health. We then analyze similarities and differences between the placenta and invasive tumors in terms of hallmarks of cancer, some key molecules regulating their invasive functions, and how placental cancers (choriocarcinomas) or other cancers become refractory or even addicted to these invasion-restraining molecules. We cite in vitro models of human trophoblast and choriocarcinoma cell lines utilized to study mechanisms in normal placental development as well as those responsible for tumor progression. We discuss the pathobiology of hyper-invasive placentas and show thattrophoblastic neoplasias are a unique and heterogeneous class of tumors. We delve into the questions as to why metastasis from other organs rarely occurs at the placental site and whether pregnancy makes the mother more or less vulnerable to cancer-related morbidity/mortality. We attempt to compare trophoblast stem cells and cancer stem cells. Finally, we leave the readers with some thoughts as foods of future investigations.


Assuntos
Neoplasias/patologia , Placenta/patologia , Placentação/fisiologia , Coriocarcinoma/patologia , Feminino , Humanos , Gravidez , Neoplasias Uterinas/patologia
2.
Cancer Metastasis Rev ; 37(2-3): 369-384, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29858743

RESUMO

Lymphangiogenesis (formation of new lymphatic vessels), unlike angiogenesis, has been a lesser-focused field in cancer biology, because of earlier controversy regarding whether lymphatic metastasis occurs via pre-existing or newly formed lymphatics. Recent evidence reveals that peri-tumoral or intra-tumoral lymphangiogenesis is a precursor for lymphatic metastasis in most carcinomas and melanomas. Two major lymphangiogenic factors, vascular endothelial growth factor (VEGF)-C and VEGF-D, are produced by cancer cells or immune cells such as macrophages in the tumor-stroma to promote sprouting of lymphatics from lymphatic endothelial cells (LEC) or LEC precursors (LECP) by binding to their primary (high affinity) receptor VEGF-R3 or secondary receptors VEGF-R2, neuropilin (NRP)2 and α9/ß1 integrin. Many other growth factors/receptors such as VEGF-A/VEGF-R2, fibroblast growth factor (FGF)2/FGF-R, platelet-derived growth factor (PDGF)/PDGF-R, hepatocyte growth factor (HGF)/C-Met, angiopoietins (Ang)1, 2/Tie2, and chemokines/ chemokine receptors (CCL21/CCR7, CCL12/CCR4) can also stimulate LEC sprouting directly or indirectly. This review deals with the roles of prostaglandins (PG), in particular PGE2, in cancer-associated lymphangiogenesis, with special emphasis on breast cancer. We show that cyclooxygenase (COX)-2 expression by breast cancer cells or tumor stroma leading to high PGE2 levels in the tumor milieu promotes lymphangiogenesis and lymphatic metastases, resulting from binding of PGE2 to PGE receptors (EP, in particular EP4) on multiple cell types: tumor cells, tumor-infiltrating immune cells, and LEC. EP4 activation on cancer cells and macrophages upregulated VEGF-C/D production to stimulate LEC sprouting. Furthermore, ligation of EP4 with PGE2 on cancer or host cells can initiate a new cascade of molecular events leading to cross-talk between cancer cells and LEC, facilitating lymphangiogenesis and lympho-vascular transport of cancer cells. We make a case for EP4 as a potential therapeutic target for breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linfangiogênese , Neovascularização Patológica , Prostaglandinas/metabolismo , Microambiente Tumoral , Animais , Biomarcadores , Neoplasias da Mama/complicações , Ciclo-Oxigenase 2/metabolismo , Progressão da Doença , Eicosanoides/metabolismo , Células Endoteliais/metabolismo , Feminino , Humanos , Técnicas In Vitro , Metástase Linfática , Linfedema/etiologia , Redes e Vias Metabólicas , Receptores de Prostaglandina/metabolismo , Transdução de Sinais
3.
Sci Rep ; 8(1): 8977, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895842

RESUMO

The origin and regulation of stem cells sustaining trophoblast renewal in the human placenta remain unclear. Decorin, a leucine-rich proteoglycan restrains trophoblast proliferation, migration/invasiveness and endovascular differentiation, and local decorin overproduction is associated with preeclampsia (PE). Here, we tested the role of decorin in human trophoblast stem cell self-renewal and differentiation, using two models: an immortalized first trimester trophoblast cell line HTR-8/SVneo (HTR) and freshly isolated primary trophoblast (p-trophoblast) from early first trimester (6-9 weeks) placentas. Self-renewal capacity was measured by spheroid forming ability of single cells on ultra-low attachment plates for multiple generations. Markers of embryonic stem (ES) cells, trophoblast stem (TS) cells and trophoblast were used to identify stem cell hierarchy. Differentiation markers for syncytial and extravillous (EVT) pathways were employed to identify differentiated cells. Bewo cells were additionally used to explore DCN effects on syncytialization. Results reveal that the incidence of spheroid forming stem-like cells was 13-15% in HTR and 0.1-0.4%, in early first trimester p-trophoblast, including a stem cell hierarchy of two populations of ES and TS-like cells. DCN restrained ES cell self-renewal, promoted ES to TS transition and maintenance of TS cell stem-ness, but inhibited TS cell differentiation into both syncytial and EVT pathways.


Assuntos
Antígenos de Diferenciação/metabolismo , Diferenciação Celular , Decorina/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Trofoblastos/metabolismo , Linhagem Celular Transformada , Feminino , Células-Tronco Embrionárias Humanas/citologia , Humanos , Gravidez , Primeiro Trimestre da Gravidez , Trofoblastos/citologia
4.
Int J Mol Sci ; 19(4)2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29596308

RESUMO

G-protein-coupled receptors (GPCRs, also called seven-transmembrane or heptahelical receptors) are a superfamily of cell surface receptor proteins that bind to many extracellular ligands and transmit signals to an intracellular guanine nucleotide-binding protein (G-protein). When a ligand binds, the receptor activates the attached G-protein by causing the exchange of Guanosine-5'-triphosphate (GTP) for guanosine diphosphate (GDP). They play a major role in many physiological functions, as well as in the pathology of many diseases, including cancer progression and metastasis. Only a few GPCR members have been exploited as targets for developing drugs with therapeutic benefit in cancer. Present review briefly summarizes the signaling pathways utilized by the EP (prostaglandin E receptor) family of GPCR, their physiological and pathological roles in carcinogenesis, with special emphasis on the roles of EP4 in breast cancer progression. We make a case for EP4 as a promising newer therapeutic target for treating breast cancer. We show that an aberrant over-expression of cyclooxygenase (COX)-2, which is an inflammation-associated enzyme, occurring in 40-50% of breast cancer patients leads to tumor progression and metastasis due to multiple cellular events resulting from an increased prostaglandin (PG) E2 production in the tumor milieu. They include inactivation of host anti-tumor immune cells, such as Natural Killer (NK) and T cells, increased immuno-suppressor function of tumor-associated macrophages, promotion of tumor cell migration, invasiveness and tumor-associated angiogenesis, due to upregulation of multiple angiogenic factors including Vascular Endothelial Growth Factor (VEGF)-A, increased lymphangiogenesis (due to upregulation of VEGF-C/D), and a stimulation of stem-like cell (SLC) phenotype in cancer cells. All of these events were primarily mediated by activation of the Prostaglandin (PG) E receptor EP4 on tumor or host cells. We show that selective EP4 antagonists (EP4A) could mitigate all of these events tested with cells in vitro as well as in vivo in syngeneic COX-2 expressing mammary cancer bearing mice or immune-deficient mice bearing COX-2 over-expressing human breast cancer xenografts. We suggest that EP4A can avoid thrombo-embolic side effects of long term use of COX-2 inhibitors by sparing cardio-protective roles of PGI2 via IP receptor activation or PGE2 via EP3 receptor activation. Furthermore, we identified two COX-2/EP4 induced oncogenic and SLC-stimulating microRNAs-miR526b and miR655, one of which (miR655) appears to be a potential blood biomarker in breast cancer patients for monitoring SLC-ablative therapies, such as with EP4A. We suggest that EP4A will likely produce the highest benefit in aggressive breast cancers, such as COX-2 expressing triple-negative breast cancers, when combined with other newer agents, such as inhibitors of programmed cell death (PD)-1 or PD-L1.


Assuntos
Proteínas de Neoplasias , Receptores de Prostaglandina E Subtipo EP4 , Neoplasias de Mama Triplo Negativas , Dinoprostona/genética , Dinoprostona/metabolismo , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
5.
BMC Cancer ; 17(1): 11, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056899

RESUMO

BACKGROUND: Lymphatic metastasis, facilitated by lymphangiogenesis is a common occurrence in breast cancer, the molecular mechanisms remaining incompletely understood. We had earlier shown that cyclooxygenase (COX)-2 expression by human or murine breast cancer cells promoted lymphangiogenesis and lymphatic metastasis by upregulating VEGF-C/D production by tumor cells or tumor-associated macrophages primarily due to activation of the prostaglandin receptor EP4 by endogenous PGE2. It is not clear whether tumor or host-derived PGE2 has any direct effect on lymphangiogenesis, and if so, whether EP4 receptors on lymphatic endothelial cells (LEC) play any role. METHODS: Here, we address these questions employing in vitro studies with a COX-2-expressing and VEGF-C/D-producing murine breast cancer cell line C3L5 and a rat mesenteric (RM) LEC line and in vivo studies in nude mice. RESULTS: RMLEC responded to PGE2, an EP4 agonist PGE1OH, or C3L5 cell-conditioned media (C3L5-CM) by increased proliferation, migration and accelerated tube formation on growth factor reduced Matrigel. Native tube formation by RMLEC on Matrigel was abrogated in the presence of a selective COX-2 inhibitor or an EP4 antagonist. Addition of PGE2 or EP4 agonist, or C3L5-CM individually in the presence of COX-2 inhibitor, or EP4 antagonist, restored tube formation, reinforcing the role of EP4 on RMLEC in tubulogenesis. These results were partially duplicated with a human dermal LEC (HMVEC-dLyAd) and a COX-2 expressing human breast cancer cell line MDA-MB-231. Knocking down EP4 with shRNA in RMLEC abrogated their tube forming capacity on Matrigel in the absence or presence of PGE2, EP4 agonist, or C3L5-CM. RMLEC tubulogenesis following EP4 activation by agonist treatment was dependent on PI3K/Akt and Erk signaling pathways and VEGFR-3 stimulation. Finally in a directed in vivo lymphangiogenesis assay (DIVLA) we demonstrated the lymphangiogenic as well as angiogenic capacity of PGE2 and EP4 agonist in vivo. DISCUSSION/CONCLUSIONS: These results demonstrate the roles of tumor as well as host-derived PGE2 in inducing lymphangiogenesis, at least in part, by activating EP4 and VEGFR-3 on LEC. EP4 being a common target on both tumor and host cells contributing to tumor-associated lymphangiogenesis reaffirms the therapeutic value of EP4 antagonists in the intervention of lymphatic metastasis in breast cancer.


Assuntos
Dinoprostona/metabolismo , Células Endoteliais/metabolismo , Linfangiogênese/fisiologia , Neoplasias Mamárias Experimentais/patologia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Células Endoteliais/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Camundongos , Camundongos Nus , Ratos , Reação em Cadeia da Polimerase em Tempo Real
6.
Cell Adh Migr ; 10(1-2): 111-25, 2016 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-26745663

RESUMO

The objective of the present review is to synthesize the information on the cellular and molecular players responsible for maintaining a homeostatic balance between a naturally invasive human placenta and the maternal uterus in pregnancy; to review the roles of decorin (DCN) as a molecular player in this homeostasis; to list the common maladies associated with a break-down in this homeostasis, resulting from a hypo-invasive or hyper-invasive placenta, and their underlying mechanisms. We show that both the fetal components of the placenta, represented primarily by the extravillous trophoblast, and the maternal component represented primarily by the decidual tissue and the endometrial arterioles, participate actively in this balance. We discuss the process of uterine angiogenesis in the context of uterine arterial changes during normal pregnancy and preeclampsia. We compare and contrast trophoblast growth and invasion with the processes involved in tumorigenesis with special emphasis on the roles of DCN and raise important questions that remain to be addressed. Decorin (DCN) is a small leucine-rich proteoglycan produced by stromal cells, including dermal fibroblasts, chondrocytes, chorionic villus mesenchymal cells and decidual cells of the pregnant endometrium. It contains a 40 kDa protein core having 10 leucine-rich repeats covalently linked with a glycosaminoglycan chain. Biological functions of DCN include: collagen assembly, myogenesis, tissue repair and regulation of cell adhesion and migration by binding to ECM molecules or antagonising multiple tyrosine kinase receptors (TKR) including EGFR, IGF-IR, HGFR and VEGFR-2. DCN restrains angiogenesis by binding to thrombospondin-1, TGFß, VEGFR-2 and possibly IGF-IR. DCN can halt tumor growth by antagonising oncogenic TKRs and restraining angiogenesis. DCN actions at the fetal-maternal interface include restraint of trophoblast migration, invasion and uterine angiogenesis. We demonstrate that DCN overexpression in the decidua is associated with preeclampsia (PE); this may have a causal role in PE by compromising endovascular differentiation of the trophoblast and uterine angiogenesis, resulting in poor arterial remodeling. Elevated DCN level in the maternal blood is suggested as a potential biomarker in PE.


Assuntos
Movimento Celular , Decorina/metabolismo , Endométrio/irrigação sanguínea , Neovascularização Fisiológica , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Trofoblastos/patologia , Animais , Endométrio/patologia , Feminino , Humanos , Gravidez
7.
J Biol Chem ; 287(39): 32881-96, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22851172

RESUMO

Multiple mechanisms have been proposed by which tumors induce T cell apoptosis to circumvent tumor immune-surveillance. Although sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) have long been known to regulate intracellular Ca(2+) homeostasis, few studies have examined the role of SERCA in processes of T lymphocyte survival and activation. In this context it remains largely unexplored as to how tumors jeopardize SERCA function to disable T cell-mediated anti-tumor immunity. Here, we show that human CD4(+) T cells in the presence of tumor conditions manifested an up-regulation of SERCA3 expression that resulted in development of endoplasmic reticulum stress leading to CD4(+) T cell apoptosis. Prostaglandin E(2) produced by the tumor cell plays a critical role in up-regulating SERCA3 by enhancing the binding of its transcription factor Sp1. Gene manipulation and pharmacological approaches further established that an increase in SERCA expression also resulted in subsequent inhibition of PKCα and -θ and retention of NFκB in the cytosol; however, down-modulation of SERCA3 expression by a dihydropyrimidone derivative, ethyl-4-(3-nitro)-phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5 carboxylate (nifetepimine), protected the CD4(+) T cells from tumor-induced apoptosis. In fact, nifetepimine-mediated restoration of PKC activity resulted in nuclear translocation of p65NFκB, thereby ensuring its survival. Studies further undertaken in a tumor-bearing mice model revalidated the immunoprotective role of nifetepimine. Our present study thus strongly suggests that imbalance in cellular calcium homeostasis is an important factor leading to CD4(+) T cell death during cancer and holds promise that nifetepimine may have the potential to be used as an immunorestoring agent in cancer bearers.


Assuntos
Neoplasias da Mama/enzimologia , Linfócitos T CD4-Positivos/metabolismo , Cálcio/metabolismo , Fatores Imunológicos/farmacologia , Proteínas de Neoplasias/metabolismo , Pirimidinonas/farmacologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Microambiente Tumoral/efeitos dos fármacos , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Linfócitos T CD4-Positivos/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Dinoprostona/genética , Dinoprostona/imunologia , Dinoprostona/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/imunologia , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Transplante de Neoplasias , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/imunologia , Proteína Quinase C-alfa/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/imunologia , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/imunologia , Fator de Transcrição Sp1/metabolismo , Transplante Heterólogo , Microambiente Tumoral/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Regulação para Cima/imunologia
8.
Eur J Med Chem ; 54: 223-31, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22658336

RESUMO

A regioselective N1-alkylation of 3,4-dihydropyrimidin-2(1H)-ones using a very efficient mild base Cs(2)CO(3) and alkyl halides at room temperature has been reported. The selectivity of this methodology is excellent and the yields of the alkylated products are very good. Furthermore inhibitory action of both the 3,4-dihydropyrimidin-2(1H)-ones and the N1-alkylated derivatives were tested on Ca(2+)-ATPase, which revealed that the parent compounds can act as Ca(2+)-ATPase inhibitors whereas the N1-alkylated derivatives are inefficient for this purpose.


Assuntos
ATPases Transportadoras de Cálcio/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Pirimidinonas/síntese química , Pirimidinonas/farmacologia , Alquilação , Animais , ATPases Transportadoras de Cálcio/química , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Modelos Moleculares , Conformação Molecular , Pirimidinonas/química , Estereoisomerismo , Especificidade por Substrato
9.
PLoS One ; 7(1): e30552, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22291985

RESUMO

Mammalian sperm capacitation is an essential prerequisite to fertilization. Although progress is being made in understanding the physiology and biochemistry of capacitation, little has been yet explored about the potential role(s) of individual sperm cell protein during this process. Therefore elucidation of the role of different sperm proteins in the process of capacitation might be of great importance to understand the process of fertilization. The present work describes the partial characterization of a 14-kDa protein (p14) detected in goat spermatozoa using an antibody directed against the purified protein. Confocal microscopic analysis reveals that the protein is present in both the intracellular and extracellular regions of the acrosomal and postacrosomal portion of caudal sperm head. Though subcellular localization shows that p14 is mainly cytosolic, however it is also seen to be present in peripheral plasma membrane and soluble part of acrosome. Immuno-localization experiment shows change in the distribution pattern of this protein upon induction of capacitation in sperm cells. Increased immunolabeling in the anterior head region of live spermatozoa is also observed when these cells are incubated under capacitating conditions, whereas most sperm cells challenged with the calcium ionophore A23187 to acrosome react, lose their labeling almost completely. Intracellular distribution of p14 also changes significantly during acrosome reaction. Interestingly, on the other hand the antibody raised against this 14-kDa sperm protein enhances the forward motility of caprine sperm cells. Rose-Bengal staining method shows that this anti-p14 antibody also decreases the number of acrosome reacted cells if incubated with capacitated sperm cells before induction of acrosome reaction. All these results taken together clearly indicate that p14 is intimately involved and plays a critical role in the acrosomal membrane fusion event.


Assuntos
Reação Acrossômica , Cabras/fisiologia , Proteínas de Plasma Seminal/fisiologia , Capacitação Espermática , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Reação Acrossômica/fisiologia , Animais , Epididimo/metabolismo , Células Epiteliais/metabolismo , Citometria de Fluxo , Cabras/metabolismo , Masculino , Microscopia de Fluorescência , Análise do Sêmen , Proteínas de Plasma Seminal/metabolismo , Capacitação Espermática/fisiologia , Espermatogênese/fisiologia , Distribuição Tecidual
10.
Eur J Med Chem ; 45(12): 6012-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20952103

RESUMO

Synthesis of a series of novel (6-deoxy-glycopyranosid-6-yl) sulfone derivatives has been achieved using a general synthetic strategy. Yields were excellent in every case. The synthetic compounds were evaluated for their biological potential against Ca2+-ATPase, an important enzyme involves in transporting Ca2+ across the cell membranes.


Assuntos
ATPases Transportadoras de Cálcio/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Glucosídeos/síntese química , Glucosídeos/farmacologia , Sulfonas/síntese química , Sulfonas/farmacologia , Animais , Configuração de Carboidratos , Membrana Celular/efeitos dos fármacos , Inibidores Enzimáticos/química , Glucosídeos/química , Cabras , Masculino , Espermatozoides/efeitos dos fármacos , Espermatozoides/enzimologia , Relação Estrutura-Atividade , Sulfonas/química
11.
Mol Cell Biochem ; 336(1-2): 39-48, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19802524

RESUMO

Protein tyrosine phosphorylation is a key event accompanying sperm capacitation. Although this signaling cascade generates an array of tyrosine-phosphorylated polypeptides, their molecular characterization is still limited. It is necessary to differentiate the localization of the tyrosine-phosphorylated proteins in spermatozoa to understand the link between the different phosphorylated proteins and the corresponding regulated sperm function. cAMP plays a pivotal role in the regulation of tyrosine phosphorylation. The intracellular cAMP levels were raised in goat spermatozoa by the addition of the phosphodiesterase inhibitor, IBMX in conjugation with caffeine. Tyrosine phosphorylation was significantly up-regulated following treatment with these two reagents. Treatment of caudal spermatozoa with IBMX and caffeine, time dependent up-regulated phosphorylation of the protein of molecular weights 50 and 200 kDa was observed. Increased phosphorylation was observed with a combination of IBMX and caffeine treatment. Tyrosine phosphorylation in caput spermatozoa was not affected significantly under these conditions. The expression level of tyrosine kinase in sperm was examined with specific inhibitors and with anti-phosphotyrosine antibody. The indirect immunofluorescence staining was carried out on ethanol permeabilized sperm using anti-phosphotyrosine antibody. Western blot analysis was done using two separate PKA antibodies: anti-PKA catalytic and anti-PKA RIalpha. Almost no difference was found in the intracellular presence of the PKA RIalpha and RIIalpha subunits in caput and caudal epididymal spermatozoa. However, the catalytic subunit seemed to be present in higher amount in caudal spermatozoa. The results show that caprine sperm displays an enhancement of phosphorylation in the tyrosine residues of specific proteins under in vitro capacitation conditions.


Assuntos
Fosfoproteínas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Capacitação Espermática/fisiologia , Espermatozoides/fisiologia , Tirosina/metabolismo , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Anticorpos Fosfo-Específicos , Cafeína/farmacologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Epididimo/citologia , Cabras , Masculino , Especificidade de Órgãos , Inibidores de Fosfodiesterase/farmacologia , Fosforilação/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais , Capacitação Espermática/efeitos dos fármacos , Cabeça do Espermatozoide/efeitos dos fármacos , Cabeça do Espermatozoide/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA