Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Life Sci ; 351: 122840, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876185

RESUMO

Pancreatic cancer is an aggressive malignancy with a poor survival rate because it is difficult to diagnose the disease during its early stages. The currently available treatments, which include surgery, chemotherapy and radiation therapy, offer only limited survival benefit. Pharmacological interventions to inhibit Glycogen Synthase Kinase-3beta (GSK3ß) activity is an important therapeutic strategy for the treatment of pancreatic cancer because GSK3ß is one of the key factors involved in the onset, progression as well as in the acquisition of chemoresistance in pancreatic cancer. Here, we report the identification of MJ34 as a potent GSK3ß inhibitor that significantly reduced growth and survival of human mutant KRas dependent pancreatic tumors. MJ34 mediated GSK3ß inhibition was seen to induce apoptosis in a ß-catenin dependent manner and downregulate NF-kB activity in MiaPaCa-2 cells thereby impeding cell survival and anti-apoptotic processes in these cells as well as in the xenograft model of pancreatic cancer. In vivo acute toxicity and in vitro cardiotoxicity studies indicate that MJ34 is well tolerated without any adverse effects. Taken together, we report the discovery of MJ34 as a potential drug candidate for the therapeutic treatment of mutant KRas-dependent human cancers through pharmacological inhibition of GSK3ß.

2.
Eur J Pharmacol ; 957: 175945, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37541376

RESUMO

AKT and ERK 1/2 play a pivotal role in cancer cell survival, proliferation, migration, and angiogenesis. Therefore, AKT and ERK 1/2 are considered crucial targets for cancer intervention. In this study, we envisaged the role of AKT and ERK signaling in apoptosis regulation in presence of compound 4h, a novel synthetic derivative of quinoxalinone substituted spiropyrrolizines exhibiting substantial antiproliferative activity in various cancer cell lines. Structurally 4h is a spiropyrrolizine derivative. Molecular docking analysis revealed that compound 4h shows strong binding affinity with AKT-1 (-9.5 kcal/mol) and ERK2 (-9.0 kcal/mol) via binding at allosteric sites of AKT and active site of ERK2. The implications of 4h binding with these two survival kinases resulted in the obstruction for ATP binding, hence, hampering their phosphorylation dependent activation. We demonstrate that 4h mediated apoptotic induction via disruption in the mitochondrial membrane potential of MCF-7 and HCT-116 cells and 4h-mediated inhibition of survival pathways occurred in a wild type PTEN background and is diminished in PTEN-/- cells. In 4T1 mammary carcinoma model, 4h exhibited pronounced reduction in the tumor size and tumor volume at significantly low doses. Besides, 4h reached the highest plasma concentration of 5.8 µM within a period of 1 h in mice model intraperitoneally. Furthermore, 4h showed acceptable clearance with an adequate elimination half-life and satisfactory pharmacokinetic behaviour, thus proclaiming as a potential lead molecule against breast and colorectal cancer by specifically inhibiting simultaneously AKT and ERK1/2 kinases.


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Simulação de Acoplamento Molecular , Animais , Camundongos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirróis/farmacologia , Quinoxalinas/farmacologia , Humanos
3.
Bioorg Med Chem ; 91: 117365, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392722

RESUMO

The complex heterogenic environment of tumour mass often leads to drug resistance and facilitate chemo insensitivity triggering more malignant phenotypes among cancer patients. Major DNA-damaging cancer drugs have been consistently proven unsuccessful in terms of elevating chemo-resistance. (±)-peharmaline A, a hybrid natural product isolated from seeds of Peganum harmala L. possesses significant cytotoxic activities. Herein, we have described the design, and synthesis of a novel library of close and simplified analogues around the anticancer natural product (±)-peharmaline A and investigated their cytotoxic activities, which led to the identification of three structurally simplified lead compounds exhibiting better potency than parent natural product. Among them, demethoxy analogue of peharmaline A was further investigated for its anticancer potential eliciting demethoxy analogue as potent DNA-damage inducing agent attenuating the expression of the proteins responsible for the DNA damage repair. Therefore, this demethoxy analogue warrants detailed investigations for the confirmations of the molecular mechanism-based studies responsible for its anticancer activity. ______________________________________________________________________________.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , Peganum , Produtos Biológicos/farmacologia , Antineoplásicos/farmacologia , Extratos Vegetais/farmacologia , DNA
4.
Chem Biol Interact ; 382: 110605, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419298

RESUMO

In spite of unprecedented advances in modern cancer therapy, there is still a dearth of targeted therapy to circumvent triple-negative breast cancer (TNBC). Paclitaxel is the front-line therapy against TNBC, but the main constraints of its treatment are dose-related adverse effects and emerging chemoresistance. In this context, glabridin (phytoconstituent from Glycyrrhiza glabra) is reported to hit multiple signalling pathways at the in-vitro level, but hardly any information is known at the in-vivo level. We aimed here to elucidate glabridin potential with an underlying mechanism in combination with a low dose of paclitaxel using a highly aggressive mouse mammary carcinoma model. Glabridin potentiated the anti-metastatic efficacy of paclitaxel by substantially curtailing tumor burden and diminishing lung nodule formation. Moreover, glabridin remarkably attenuated epithelial-mesenchymal transition (EMT) traits of hostile cancer cells via up-regulating (E-cadherin & occludin) and down-regulating (Vimentin & Zeb1) vital EMT markers. Besides, glabridin amplified apoptotic induction effect of paclitaxel in tumor tissue by declining or elevating pro-apoptotic (Procaspase-9 or Cleaved Caspase-9 & Bax) and reducing anti-apoptotic (Bcl-2) markers. Additionally, concomitant treatment of glabridin and paclitaxel predominantly lessened CYP2J2 expression with marked lowering of epoxyeicosatrienoic acid (EET)'s levels in tumor tissue to reinforce the anti-tumor impact. Simultaneous administration of glabridin with paclitaxel notably enhanced plasma exposure and delayed clearance of paclitaxel, which was mainly arbitrated by CYP2C8-mediated slowdown of paclitaxel metabolism in the liver. The fact of intense CYP2C8 inhibitory action of glabridin was also ascertained using human liver microsomes. Concisely, glabridin plays a dual role in boosting anti-metastatic activity by augmenting paclitaxel exposure via CYP2C8 inhibition-mediated delaying paclitaxel metabolism and limiting tumorigenesis via CYP2J2 inhibition-mediated restricting EETs level. Considering the safety, reported protective efficacy, and the current study results of boosted anti-metastatic effects, further investigations are warranted as a promising neoadjuvant therapy for crux paclitaxel chemoresistance and cancer recurrence.


Assuntos
Paclitaxel , Neoplasias de Mama Triplo Negativas , Camundongos , Animais , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Citocromo P-450 CYP2J2 , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Citocromo P-450 CYP2C8 , Eicosanoides , Fígado , Linhagem Celular Tumoral
5.
ACS Pharmacol Transl Sci ; 6(6): 868-877, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37325443

RESUMO

The use of adjuvant therapy is an attractive approach to manage sickle cell disease (SCD) symptomatically. The present study aimed to investigate the potential of ellagic acid as an adjuvant therapy with hydroxyurea (HU), a key drug for SCD with myelosuppressive toxic effects. A panel of experiments was performed using SCD patient's blood (ex vivo) and transgenic mice model of SCD (in vivo). Ellagic acid exhibited the following beneficial pharmacological actions: (a) potent anti-sickling, polymerization inhibitory, and inherent non-hemolytic activity; (b) pronounced action to abrogate HU-induced neutropenia and to improve key hematological parameters during SCD (RBC, Hb, platelet levels); (c) considerable action to foster vascular tone (L-proline); (d) marked attenuating effect against oxidative stress (nitrotyrosine, hypoxanthine, MDA, GSH); (e) substantial inhibitory role against inflammation (analgesic activity and regulation of hemin, TNF-α, IL-1ß, NF-κB/IκBα); (f) remarkable outcome of declining vaso-occlusive crisis (P-selectin, ERK1/2); (g) notable shielding deed against elevated biochemical marker for organ toxicity (creatinine); (h) noticeably prevented histopathological alterations of the spleen. Additionally, the pharmacokinetic study results of HU in the presence and absence of ellagic acid using a mouse model demonstrate that ellagic acid could be safely co-administered with HU. Overall findings suggest that ellagic acid is a promising candidate for adjuvant therapy in SCD based on its own significant ability against SCD and potentiating capability of HU action via targeting improvement at the various stages of pathophysiological complications during SCD and minimizing HU-induced toxicological manifestations.

6.
Eur J Med Chem ; 258: 115533, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37302342

RESUMO

The chromone alkaloid is one of the classical pharmacophores for cyclin-dependent kinases (CDKs) and represents the first CDK inhibitor to reach clinical trials. Rohitukine (1), a chromone alkaloid isolated from Dysoxylum binectariferum inspired the discovery of several clinical candidates. The N-oxide derivative of rohitukine occurs naturally, with no reports on its biological activity. Herein, we report isolation, biological evaluation, and synthetic modification of rohitukine N-oxide for CDK9/T1 inhibition and antiproliferative activity in cancer cells. Rohitukine N-oxide (2) inhibits CDK9/T1 (IC50 7.6 µM) and shows antiproliferative activity in the colon and pancreatic cancer cells. The chloro-substituted styryl derivatives, 2b, and 2l, inhibit CDK9/T1 with IC50 values of 0.17 and 0.15 µM, respectively. These derivatives display cellular antiproliferative activity in HCT 116 (colon) and MIA PaCa-2 (pancreatic) cancer cells with GI50 values of 2.5-9.7 µM with excellent selectivity over HEK293 (embryonic kidney) cells. Both analogs induce cell death in MIA PaCa-2 cells via inducing intracellular ROS production, reducing mitochondrial membrane potential, and inducing apoptosis. These analogs are metabolically stable in liver microsomes and have a decent oral pharmacokinetics in BALB/c mice. The molecular modeling studies indicated their strong binding at the ATP-binding site of CDK7/H and CDK9/T1.


Assuntos
Alcaloides , Antineoplásicos , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Células HEK293 , Cromonas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Quinases Ciclina-Dependentes , Alcaloides/química , Neoplasias Pancreáticas/tratamento farmacológico , Quinase 9 Dependente de Ciclina
7.
Chem Biol Interact ; 380: 110524, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146929

RESUMO

CYP2C8 is a crucial CYP isoform responsible for the metabolism of xenobiotics and endogenous molecules. CYP2C8 converts arachidonic acid to epoxyeicosatrienoic acids (EETs) that cause cancer progression. Rottlerin possess significant anticancer actions. However, information on its CYP inhibitory action is lacking in the literature and therefore, we aimed to explore the same using in silico, in vitro, and in vivo approaches. Rottlerin showed highly potent and selective CYP2C8 inhibition (IC50 < 0.1 µM) compared to negligible inhibition (IC50 > 10 µM) for seven other experimental CYPs in human liver microsomes (HLM) (in vitro) using USFDA recommended index reactions. Mechanistic studies reveal that rottlerin could reversibly (mixed-type) block CYP2C8. Molecular docking (in silico) results indicate a strong interaction could occur between rottlerin and the active site of human CYP2C8. Rottlerin boosted the plasma exposure of repaglinide and paclitaxel (CYP2C8 substrates) by delaying their metabolism using the rat model (in vivo). Multiple-dose treatment of rottlerin with CYP2C8 substrates lowered the CYP2C8 protein expression and up-regulated & down-regulated the mRNA for CYP2C12 & CYP2C11 (rat homologs), respectively, in rat liver tissue. Rottlerin substantially hindered the EET formation in HLM. Overall results of rottlerin on CYP2C8 inhibition and EET formation insinuate further exploration for cancer therapy.


Assuntos
Sistema Enzimático do Citocromo P-450 , Neoplasias , Humanos , Ratos , Animais , Citocromo P-450 CYP2C8/metabolismo , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Acetofenonas , Microssomos Hepáticos/metabolismo , Neoplasias/metabolismo
8.
ACS Appl Bio Mater ; 6(2): 733-744, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36646666

RESUMO

A redox-responsive macromolecular prodrug of tacrolimus, HA-ss-Tac, was constructed by conjugation of tacrolimus (TAC, FK506) through its succinate ester to cystamine-modified hyaluronic acid (HA-Cys), and its physicochemical properties and immunosuppressive activity were studied. The synthesized HA-ss-TAC was determined to contain 8% of chemically loaded TAC with significantly enhanced water solubility. The release study showed a sustained release of drug through slow degradation of linker-drug bonds. In vitro inhibition of proliferation of T- and B-lymphocytes was almost comparable to that of TAC, implying that the biologically active compound could be released from the conjugate. The polymeric prodrug lacks obvious cytotoxicity on Raw 264.7 macrophages and significantly suppressed the production of inflammatory cytokines IL-2 and IL-1ß by LPS-activated cells. Additionally, the cellular uptake study of the FITC-labeled conjugate confirmed the HA receptor-mediated internalization of the conjugate into targeted cells, thus avoiding systemic side effects. Taken together, the HA-ss-TAC prodrug could be an optimal prodrug for intravenous administration based on this preliminary data and can be expected to have improved therapeutic efficacy.


Assuntos
Pró-Fármacos , Tacrolimo , Tacrolimo/farmacologia , Pró-Fármacos/farmacologia , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Oxirredução , Solubilidade
9.
Drug Dev Res ; 84(1): 121-140, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461610

RESUMO

Berberrubine is a naturally occurring isoquinoline alkaloid and a bioactive metabolite of berberine. Berberine exhibits a wide range of pharmacological activities, including cholinesterase inhibition. The cholinesterase inhibitors provide symptomatic treatment for Alzheimer's disease; however, multitarget-directed ligands have the potential as disease-modifying therapeutics. Herein, we prepared a series of C9-substituted berberrubine derivatives intending to discover dual cholinesterase and beta-site amyloid-precursor protein cleaving enzyme 1 (BACE-1) inhibitors. Most synthesized derivatives possessed balanced dual inhibition (AChE and BChE) activity in the submicromolar range and a moderate inhibition against BACE-1. Two most active ester derivatives, 12a and 11d, display inhibition of AChE, BChE, and BACE-1. The 3-methoxybenzoyl ester derivative, 12a, inhibits electric eel acetylcholinesterase (EeAChE), equine serum butyrylcholinesterase (eqBChE), and human hBACE-1 with IC50 values of 0.5, 4.3, and 11.9 µM, respectively and excellent BBB permeability (Pe = 8 × 10-6 cm/s). The ester derivative 12a is metabolically unstable; however, its ether analog 13 is stable in HLM and exhibits inhibition of AChE, BChE, and BACE-1 with IC50 values of 0.44, 3.8, and 17.9 µM, respectively. The ether analog also inhibits self-aggregation of Aß and crosses BBB (Pe = 7.3 × 10-6 cm/s). Administration of 13 at 5 mg/kg (iv) in Wistar rats showed excellent plasma exposure with AUC0-∞ of 28,834 ng min/ml. In conclusion, the multitargeted berberrubine ether derivative 13 is CNS permeable and has good ADME properties.


Assuntos
Doença de Alzheimer , Berberina , Ratos , Animais , Cavalos , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Berberina/farmacologia , Relação Estrutura-Atividade , Éter/uso terapêutico , Simulação de Acoplamento Molecular , Ratos Wistar , Inibidores da Colinesterase , Etil-Éteres/uso terapêutico , Éteres/uso terapêutico , Estrutura Molecular
10.
J Integr Med ; 21(1): 62-76, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36253285

RESUMO

OBJECTIVE: The current study evaluated various new colchicine analogs for their anticancer activity and to study the primary mechanism of apoptosis and in vivo antitumor activity of the analogs with selective anticancer properties and minimal toxicity to normal cells. METHODS: Sulforhodamine B (SRB) assay was used to screen various colchicine analogs for their in vitro cytotoxicity. The effect of N-[(7S)-1,2,3-trimethoxy-9-oxo-10-(pyrrolidine-1-yl)5,6,7,9-tetrahydrobenzo[a] heptalene-7-yl] acetamide (IIIM-067) on clonogenicity, apoptotic induction, and invasiveness of A549 cells was determined using a clonogenic assay, scratch assay, and staining with 4',6-diamidino-2-phenylindole (DAPI) and annexin V/propidium iodide. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels were observed using fluorescence microscopy. Western blot analysis was used to quantify expression of proteins involved in apoptosis, cell cycle, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. Pharmacokinetic and in vivo efficacy studies against Ehrlich ascites carcinoma (EAC) and Ehrlich solid tumor models were conducted using Swiss albino mice. RESULTS: IIIM-067 showed potent cytotoxicity and better selectivity than all other colchicine analogs screened in this study. The selective activity of IIIM-067 toward A549 cells was higher among other cancer cell lines, with a selectivity index (SI) value of 2.28. IIIM-067 demonstrated concentration- and time-dependent cytotoxicity against A549 cells with half-maximal inhibitory concentration values of 0.207, 0.150 and 0.106 µmol/L at 24, 48 and 72 h, respectively. It also had reduced toxicity to normal cells (SI > 1) than the parent compound colchicine (SI = 1). IIIM-067 reduced the clonogenic ability of A549 cells in a dose-dependent manner. IIIM-067 enhanced ROS production from 24.6% at 0.05 µmol/L to 82.1% at 0.4 µmol/L and substantially decreased the MMP (100% in control to 5.6% at 0.4 µmol/L). The annexin V-FITC assay demonstrated 78% apoptosis at 0.4 µmol/L. IIIM-067 significantly (P < 0.5) induced the expression of various intrinsic apoptotic pathway proteins, and it differentially regulated the PI3K/AKT/mTOR signaling pathway. Furthermore, IIIM-067 exhibited remarkable in vivo anticancer activity against the murine EAC model, with tumor growth inhibition (TGI) of 67.0% at a dose of 6 mg/kg (i.p.) and a reduced mortality compared to colchicine. IIIM-067 also effectively inhibited the tumor growth in the murine solid tumor model with TGI rates of 48.10%, 55.68% and 44.00% at doses of 5 mg/kg (i.p.), 6 mg/kg (i.p.) and 7 mg/kg (p.o.), respectively. CONCLUSION: IIIM-067 exhibited significant anticancer activity with reduced toxicity both in vitro and in vivo and is a promising anticancer candidate. However, further studies are required in clinical settings to fully understand its potential.


Assuntos
Antineoplásicos Fitogênicos , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Colchicina/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Mamíferos/metabolismo
11.
Chem Biol Interact ; 365: 110093, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35985519

RESUMO

Biosynthesis of bisaryl preanthraquinone antibiotics by various microorganisms differs in monomeric subunits as well as their dimerization positions leading to different configurations. The present study relates to the production of rare bisaryl anthraquinone antibiotics by a new Streptomyces strain isolated from Shivalik region of NW Himalayas. In vitro anticancer and anti-migratory effects of Setomimycin (9,9' bisanthraquinone antibiotic) was seen with a significant reduction in the expression of both MEK as well as ERK pathways in a dose dependent manner at 6.5 µM & 8 µM concentration in HCT-116 and 5.5 µM & 7 µM concentration in MCF-7 cells. In vivo studies in aggressive orthotopic mouse mammary carcinoma model (4T1) demonstrated about 76% reduction of primary tumor weight and 90.5% reduction in the tumor volume within two weeks. In vivo pharmacokinetics study of setomimycin revealed that it can be rapidly absorbed with an adequate plasma exposure and half-life which can be linked to its in vivo efficacy.


Assuntos
Streptomyces , Animais , Antraquinonas/metabolismo , Antraquinonas/farmacologia , Antibacterianos , Humanos , Células MCF-7 , Camundongos , Streptomyces/metabolismo
12.
Chem Biol Interact ; 366: 110109, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995259

RESUMO

Despite substantial breakthroughs in cancer research, there is hardly any specific therapy available to date that can alleviate triple-negative breast cancer (TNBC). Paclitaxel is the first-line chemotherapy option, but its treatment is often associated with early discontinuation of therapy due to the development of resistance and/or precipitation of severe side effects. In the quest to establish a suitable combination therapy with a low dose of paclitaxel, we explored rottlerin (a pure and characterized phytoconstituent from Mallotus philippensis) because of its multifaceted pharmacological actions against cancer. The study was performed to assess the therapeutic effects of rottlerin (5-20 mg/kg) with a low dose of paclitaxel (5 mg/kg) using a highly aggressive mouse mammary carcinoma model. Rottlerin augmented the paclitaxel effect by reducing tumor burden as well as metastatic lung nodules formation. Rottlerin in combination with paclitaxel remarkably altered the expression of vital epithelial-mesenchymal transition (EMT) markers such as E-cadherin, Snail 1, & Vimentin and thus improved the anti-metastatic efficacy of paclitaxel. Significant attenuation of anti-apoptotic protein (Bcl-2) along with amplification of pro-apoptotic (cleaved PARP) marker confers that rottlerin could ameliorate the pro-apoptotic potential of paclitaxel. In this study, a rational combination of rottlerin and paclitaxel treatment curtailed CYP2J2 expression and epoxyeicosatrienoic acids (EETs) levels, responsible for restrain tumor growth and metastasis. Additionally, rottlerin lessened paclitaxel treatment-mediated hematological alterations and prevented paclitaxel treatment-linked key serum biochemical changes related to organ toxicities. These rottlerin treatment-mediated protective changes are closely associated with the lower paclitaxel accumulation in the corresponding tissues. Rottlerin caused significant pharmacokinetic interaction with paclitaxel to boost the plasma level of paclitaxel in a typical mouse model and possibly helpful towards the use of a low dose of paclitaxel in combination. Overall, it can be stated that rottlerin has significant potential to augment the anti-metastatic efficacy of paclitaxel via impeding EMT activation along with attenuating its treatment-associated toxicological alterations. Hence, rottlerin has significant potential to explore further as a suitable neoadjuvant therapy with paclitaxel against TNBC.


Assuntos
Paclitaxel , Neoplasias de Mama Triplo Negativas , Acetofenonas , Animais , Proteínas Reguladoras de Apoptose , Benzopiranos , Caderinas/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Humanos , Camundongos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2 , Neoplasias de Mama Triplo Negativas/metabolismo , Vimentina/metabolismo
13.
Toxicol Appl Pharmacol ; 449: 116113, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35691369

RESUMO

Hydroxyurea (HU) is the key drug to treat Sickle cell anemia (SCA). However, its treatment is associated with the liability of myelosuppression. The present study aimed to investigate the potential of epicatechin as a supplementation therapy for the symptomatic management of SCA under HU therapy. A panel of experiments were performed at first to observe epicatechin's effect on sickling and hemolytic behaviour using SCA patient's blood (ex vivo). Thereafter, the effect of HU in the presence or absence of epicatechin was investigated on cytokine inhibition in rat splenocytes (ex vivo) as well as alterations in hematological parameters and kidney function tests in rats (in vivo). Then, any effect of epicatechin on pharmacokinetic modulation of HU in rats was elucidated along with the underlying mechanism using a battery of in vitro and in vivo models. Epicatechin exhibited potent action on anti-sickling, polymerization inhibition, and erythrocyte membrane stability. It did not show any inherent hemolytic activity and reduced TNF-α level during concomitant administration with HU. Based on hematological changes in rats, epicatechin treatment aided to the beneficial effect of HU and prevented the treatment-linked disadvantageous effects of HU like neutropenia. The plasma exposure of HU was significantly augmented in rats upon simultaneous oral administration of epicatechin with HU. Down-regulation of Oatp1b2 and catalase possibly contributed to the pharmacokinetic interaction of HU. Epicatechin is found to be a promising candidate and should be explored at a reduced dose level of HU towards offsetting the dose-dependent myelosuppressive effect of HU under the frame of supplementation therapy in SCA.


Assuntos
Anemia Falciforme , Catequina , Anemia Falciforme/complicações , Anemia Falciforme/tratamento farmacológico , Animais , Catequina/farmacologia , Catequina/uso terapêutico , Citocinas , Membrana Eritrocítica , Hidroxiureia/farmacocinética , Hidroxiureia/toxicidade , Ratos
14.
ACS Pharmacol Transl Sci ; 5(5): 306-320, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35592435

RESUMO

PMBA (2-Pyridin-4-yl-methylene-beta-boswellic acid), screened from among the 21 novel series of semisynthetic analogues of ß-boswellic acid, is being presented as a lead compound for integrative management of KRAS mutant colorectal cancer (CRC), upon testing and analysis for its anticancerous activity on a panel of NCI-60 cancer cell lines and in vivo models of the disease. PMBA (1.7-29 µM) exhibited potent proliferation inhibition on the cell lines and showed sensitivity in microsatellite instability and microsatellite stable (GSE39582 and GSE92921) subsets of KRAS gene (Kirsten rat sarcoma viral oncogene homolog)-mutated colon cell lines, as revealed via flow cytometry analysis. A considerable decrease in mitogen-activated protein kinase pathway downstream effectors was observed in the treated cell lines via the western blot and STRING (Search tool for the retrieval of interacting genes/proteins) analysis. PMBA was further found to target KRAS at its guanosine diphosphate site. Treatment of the cell lines with PMBA showed significant reduction in MGMT promoter methylation but restored MGMT (O6-methylguanine-DNA methyltransferase) messenger ribonucleic acid expression via significant demethylation of the hypermethylated CpG (Cytosine phosphate guanine) sites in the MGMT promoter. A significant decrease in dimethylated H3K9 (Dimethylation of lysine 9 on histone 3) levels in the MGMT promoter in DNA hypo- and hypermethylated HCT-116G13D and SW-620G12V cells was observed after treatment. In the MNU (N-methyl-N-nitrosourea)-induced CRC in vivo model, PMBA instillation restricted and repressed polyp formation, suppressed tumor proliferation marker Ki67 (Marker of proliferation), ablated KRAS-associated cytokine signaling, and decreased mortality. Clinical trial data for the parent molecule revealed its effectiveness against the disease, oral bioavailability, and system tolerance. Comprehensively, PMBA represents a new class of KRAS inhibitors having a therapeutic window in the scope of a drug candidate. The findings suggest that the PMBA analogue could inhibit the growth of human CRC in vivo through downregulation of cancer-associated biomarkers as well as reactivate expression of the MGMT gene associated with increased H3K9 acetylation and H3K4 methylation with facilitated transcriptional activation, which might be important in silencing of genes associated with upregulation in the activity of KRAS.

15.
ACS Omega ; 7(15): 13260-13269, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35474783

RESUMO

Myricetin, a bioflavonoid, is widely used as functional food/complementary medicine and has promising multifaceted pharmacological actions against therapeutically validated anticancer targets. On the other hand, CYP2C8 is not only crucial for alteration in the pharmacokinetics of drugs to cause drug interaction but also unequivocally important for the metabolism of endogenous substances like the formation of epoxyeicosatrienoic acids (EETs), which are considered as signaling molecules against hallmarks of cancer. However, there is hardly any information known to date about the effect of myricetin on CYP2C8 inhibition and, subsequently, the CYP2C8-mediated drug interaction potential of myricetin at the preclinical/clinical level. We aimed here to explore the CYP2C8 inhibitory potential of myricetin using in silico, in vitro, and in vivo investigations. In the in vitro study, myricetin showed a substantial effect on CYP2C8 inhibition in human liver microsomes using CYP2C8-catalyzed amodiaquine-N-deethylation as an index reaction. Considering the Lineweaver-Burk plot, the Dixon plot, and the higher α-value, myricetin is found to be a mixed type of CYP2C8 inhibitor. Moreover, in vitro-in vivo extrapolation data suggest that myricetin is likely to cause drug interaction at the hepatic level. The molecular docking study depicted a strong interaction between myricetin and the active site of the human CYP2C8 enzyme. Moreover, myricetin caused considerable elevation in the oral exposure of amodiaquine as a CYP2C8 substrate via a slowdown of amodiaquine clearance in the rat model. Overall, the potent action of myricetin on CYP2C8 inhibition indicates that there is a need for further exploration to avoid drug interaction-mediated precipitation of obvious adverse effects as well as to optimize anticancer therapy.

16.
Heliyon ; 8(4): e09103, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35445157

RESUMO

ß-Boswellic acid (ß-BA), a potent NF-kB signaling pathway inhibitor, has shown synergistic anti-cancerous activity (NCT03149081, NCT00243022 and NCT02977936) in various clinical trials as complementary therapies. The study has been conducted to investigate the effect and efficacy of 2-pyridin-4-yl methylene ß-boswellic acid (PMBA) and 5-Flourouracil (5-FU) in combination therapy for the treatment of KRAS mutant colon cancer. Analysis of isobologram showed synergistic combination index (CI > 1) of PMBA and 5-FU against the HCT-116 G13D and SW-620 G12V cell lines. The growth-inhibiting PMBA also caused apoptosis mediating effects with dose-dependent increase in caspase-3 activity, while inhibiting the formation of colonies in combination with 5-FU. As evident, PMBA affected colorectal 3D CSC properties including the ability to self-renew along with the expression of multi-drug resistance genes, viz., ABCB1, ABCC1 and ALDH1A1, ALDH1A2, ALDH1A3, ALDH3A1, and CSC markers like CD44, CD166, EPCAM, OCT-4, SOX-2, and NANOG compared with those in 2D model explaining the expression pattern of oncogenic KRAS G13D, G12V mutation. When examined for plasma level of PMBA (20 mg) and PMBA+5-FU (20 + 40 mg), a time-dependent increase in the level of the drug (5-FU) was detected, indicating its absorption and bioavailability with excellent half-life of the PMBA for both routes of administration (IV and Oral), thereby indicating a new adjuvant therapy for KRAS mutant colon cancer.

17.
ACS Omega ; 6(48): 32637-32646, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34901612

RESUMO

Rottlerin is a key bioactive phytoconstituent present in the pericarp of Mallotus philippensis. It shows promising multifaceted pharmacological actions against cancer. However, there is hardly any report for the quantification of rottlerin in the biological matrix and on its pharmacokinetic behavior. Therefore, we aimed in the present study to assess selective in vitro ADME properties and in vivo pharmacokinetics of isolated and characterized rottlerin using a newly developed and validated liquid chromatography-tandem mass spectrometry-based highly sensitive bioanalytical method. The method was found to be simple (mobile phase and analytical column), sensitive (1.9 ng/mL), and rapid (run time of 2.5 min). All the validation parameters were within the acceptable criteria of the United States Food and Drug Administration's bioanalytical method validation guideline. The method was found to be very useful to assess lipophilicity, plasma stability, metabolic stability, plasma protein binding of rottlerin, as well as its oral and intravenous pharmacokinetics in mice. Rottlerin showed a number of drug-like pharmacokinetic properties (in vitro). Moreover, it displayed an excellent half-life (>2 h) and oral bioavailability (>35%) as compared to other members of natural phenolics. The present study is the first-time report of in vitro ADME properties and in vivo preclinical pharmacokinetics of rottlerin. The generated information is very much useful for its further development as a phytotherapeutics toward cancer therapy.

18.
ACS Omega ; 6(22): 14542-14550, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34124477

RESUMO

Hydroxyurea (HU) is the first-ever approved drug by USFDA for sickle cell anemia (SCA). However, its treatment is associated with severe side effects like myelosuppression. Current studies are focused on the supplementation therapy for symptomatic management of SCA. In the present study, we aimed to explore rutin's and gallic acid's potential individually, for concomitant therapy with HU using pharmacokinetic and pharmacodynamic approaches since there is no such precedent till date. In vivo pharmacokinetic studies of HU in rats showed that rutin could be safely co-administered with HU, while gallic acid significantly raised the plasma concentration of HU. Both the phytochemicals did not have any marked inhibitory effect on urease but have considerable effects on horseradish peroxidase enzyme. The experimental phytoconstituents displayed a very low propensity to cause in vitro hemolysis. Gallic acid markedly enhanced the HU-induced decrease in lymphocyte proliferation. A substantial improvement by rutin or gallic acid was observed in HU-induced reduction of the main hematological parameters in rats. Combined treatment of HU with rutin and gallic acid reduced serum levels of both IL-6 and IL-17A. Overall, both rutin and gallic acid are found to have promising phytotherapy potential with HU. Further exploration needs to be done on both candidates for use as phytotherapeutics for SCA.

19.
Life Sci ; 278: 119583, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33957170

RESUMO

Despite unprecedented advances in modern medicine, no safe and effective drug is available to date for oral administration to combat drug-induced liver injury, which is a vital concern nowadays. The present study deals with the hepatoprotective effect of pure glabridin, a key phytoconstituent from Glycyrrhiza glabra with mechanistic investigations using an in-vivo methotrexate-induced liver injury model as there is no such precedent. The study was performed in the Swiss mice model where a single dose of methotrexate (40 mg/kg) was given on the 7th day through an intraperitoneal route to induce hepatotoxicity, and glabridin as a test compound was administered orally for eleven consecutive days at 10 to 40 mg/kg. Glabridin markedly improved serum biochemical parameters (SGPT, SGOT), proinflammatory cytokine (TNF-α) level, oxidative stress markers (MDA, GSH, SOD, CAT) as compared to methotrexate alone. Alterations in methotrexate-induced liver architecture were considerably prevented by glabridin treatment as suggested by liver histopathological examination and SEM investigation. Glabridin substantially prevented methotrexate-induced down-regulation of Nrf2, & activation of NF-κB, and caused up-regulation of BAX at different dose levels. Overall, glabridin is found to protect methotrexate-induced hepatotoxicity by improving important factors for oxidative stress, inflammation, and apoptosis.


Assuntos
Apoptose , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Inflamação/terapia , Isoflavonas/farmacologia , Fígado/efeitos dos fármacos , Estresse Oxidativo , Fenóis/farmacologia , Animais , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Regulação para Baixo , Glycyrrhiza , Humanos , Fígado/lesões , Fígado/metabolismo , Metotrexato , Camundongos , NF-kappa B/metabolismo , Substâncias Protetoras/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
20.
Eur J Pharm Biopharm ; 160: 100-124, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33497794

RESUMO

Present study addresses the challenge of incorporating hydrophilic streptomycin sulphate (STRS; log P -6.4) with high dose (1 g/day) into a lipid matrix of SLNs. Cold high-pressure homogenization technique used for SLN preparation achieved 30% drug loading and 51.17 ± 0.95% entrapment efficiency. Polyethylene glycol 600 as a supporting-surfactant assigned small size (218.1 ± 15.46 nm) and mucus-penetrating property. It was conceived to administer STRS-SLNs orally rather than intramuscularly. STRS-SLNs remained stable on incubation for varying times in SGF or SIF. STRS-SLNs were extensively characterised for microscopic (TEM and AFM), thermal (DSC), diffraction (XRD) and spectroscopic (NMR and FTIR) properties and showed zero-order controlled release. Enhanced (60 times) intracellular uptake was observed in THP-1 and Pgp expressing LoVo and DLD-1 cell lines, using fluorescein-SLNs. Presence of SLNs in LoVo cells was also revealed by TEM studies. STRS-SLNs showed 3 times reduction in MIC against Mycobacterium tuberculosis H37RV (256182) in comparison to free STRS. It also showed better activity against both M. bovis BCG and Mycobacterium tuberculosis H37RV (272994) in comparison to free STRS. Cytotoxicity and acute toxicity studies (OECD 425 guidelines) confirmed in vitro and in vivo safety of STRS-SLNs. Single-dose oral pharmacokinetic studies in rat plasma using validated LCMS/MS technique or the microbioassay showed significant oral absorption and bioavailability (160% - 710% increase than free drug).


Assuntos
Antituberculosos/administração & dosagem , Portadores de Fármacos/química , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Estreptomicina/administração & dosagem , Administração Oral , Animais , Antituberculosos/química , Antituberculosos/farmacocinética , Antituberculosos/toxicidade , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Macrófagos/metabolismo , Masculino , Testes de Sensibilidade Microbiana , Nanopartículas/química , Tamanho da Partícula , Ratos , Solubilidade , Estreptomicina/química , Estreptomicina/farmacocinética , Estreptomicina/toxicidade , Células THP-1 , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA