Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38730907

RESUMO

Martensitic low-alloy steels are widely used in machine construction. Due to their declared weldability, arc welding is most often used to join elements made of this type of steel. However, the high temperature associated with welding causes unfavourable changes in the microstructure, resulting in reduced abrasion resistance. Therefore, it is important to know the tribological properties of the welded joint. This article presents the results of a study on the abrasion wear resistance of a welded joint of an abrasion-resistant steel. This study tested a welded joint of an abrasive-resistant steel produced by the arc welding method. Wear testing of the welded joint was carried out under laboratory conditions by the ball-cratering method in the presence of abrasive slurry on the cross-section of the welded joint. Based on the test results, the change in the abrasive wear rate of the material as a function of the distance from the welded joint axis was determined. It was also found that the thermal processes accompanying welding caused structural changes that increased the wear rate index value. Adverse changes in the tribological properties of a welded material persist up to a distance of approx. 20 mm from the weld centre.

2.
Materials (Basel) ; 16(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37512396

RESUMO

On-stream inspections are the most appropriate method for routine inspections during plant operation without undergoing production downtime. Ultrasonic inspection, one of the on-stream inspection methods, faces challenges when performed at high temperatures exceeding the recommended 52 °C. This study aims to determine the ultrasonic velocity and attenuation with known material grade, thickness, and temperatures by comparing theoretical calculation and experimentation, with temperatures ranging between 30 °C to 250 °C on low-carbon steel, covering most petrochemical equipment material and working conditions. The aim of the theoretical analysis was to obtain Young's modulus, Poisson's ratio, and longitudinal velocity at different temperatures. The experiments validated the theoretical results of ultrasonic change due to temperature increase. It was found that the difference between the experiments and theoretical calculation is 3% at maximum. The experimental data of velocity and decibel change from the temperature range provide a reference for the future when dealing with unknown materials information on site that requires a quick corrosion status determination.

3.
Materials (Basel) ; 15(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36234229

RESUMO

This study presents the results of testing for abrasive wear of Vanadis 60 SuperClean powder metallurgy steel as compared to Hardox 600 steel and PMFe60P padding weld. The testing was conducted by the "rotating bowl" method using natural abrasive soil masses. Two types of abrasive masses with particle size distributions corresponding to light soil and medium soil were used. The obtained results enable the conclusion that the weight loss for Vanadis 60 SuperClean powder steel in both types of abrasive mass was approximately seven times lower than that for Hardox 600 steel and two times lower than PMFe60P padding weld. The high resistance of powder steel to abrasive wear in abrasive soil masses is related to the presence of a large number of fine M6C (tungsten-molybdenum) and MC (vanadium) carbide precipitates in its microstructure. The obtained test results indicate that the application of Vanadis 60 SuperClean steel may be extended to working elements operating in mineral abrasive environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA