Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Rev Med Virol ; 34(3): e2543, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38782605

RESUMO

COVID-19 as a pan-epidemic is waning but there it is imperative to understand virus interaction with oral tissues and oral inflammatory diseases. We review periodontal disease (PD), a common inflammatory oral disease, as a driver of COVID-19 and oral post-acute-sequelae conditions (PASC). Oral PASC identifies with PD, loss of teeth, dysgeusia, xerostomia, sialolitis-sialolith, and mucositis. We contend that PD-associated oral microbial dysbiosis involving higher burden of periodontopathic bacteria provide an optimal microenvironment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These pathogens interact with oral epithelial cells activate molecular or biochemical pathways that promote viral adherence, entry, and persistence in the oral cavity. A repertoire of diverse molecules identifies this relationship including lipids, carbohydrates and enzymes. The S protein of SARS-CoV-2 binds to the ACE2 receptor and is activated by protease activity of host furin or TRMPSS2 that cleave S protein subunits to promote viral entry. However, PD pathogens provide additional enzymatic assistance mimicking furin and augment SARS-CoV-2 adherence by inducing viral entry receptors ACE2/TRMPSS, which are poorly expressed on oral epithelial cells. We discuss the mechanisms involving periodontopathogens and host factors that facilitate SARS-CoV-2 infection and immune resistance resulting in incomplete clearance and risk for 'long-haul' oral health issues characterising PASC. Finally, we suggest potential diagnostic markers and treatment avenues to mitigate oral PASC.


Assuntos
Doenças Periodontais , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Disbiose/microbiologia , Interações Hospedeiro-Patógeno , Boca/metabolismo , Boca/virologia , Doenças Periodontais/metabolismo , Doenças Periodontais/virologia , Síndrome de COVID-19 Pós-Aguda/metabolismo , Síndrome de COVID-19 Pós-Aguda/virologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
2.
Inflamm Res ; 73(5): 771-792, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38592458

RESUMO

INTRODUCTION: Macrophages (Mφs) are functionally dynamic immune cells that bridge innate and adaptive immune responses; however, the underlying epigenetic mechanisms that control Mφ plasticity and innate immune functions are not well elucidated. OBJECTIVE: To identify novel functions of macrophage-enriched lncRNAs in regulating polarization and innate immune responses. METHODS: Total RNA isolated from differentiating monocyte-derived M1 and M2 Mφs was profiled for lncRNAs expression using RNAseq. Impact of LRRC75A-AS1, GAPLINC and AL139099.5 knockdown was examined on macrophage differentiation, polarization markers, phagocytosis, and antigen processing by flow cytometry and florescence microscopy. Cytokine profiles were examined by multiplex bead array and cytoskeletal signaling pathway genes were quantified by PCR-based array. Gingival biopsies were collected from periodontally healthy and diseased subjects to examine lncRNAs, M1/M2 marker expression. RESULTS: Transcriptome profiling of M1 and M2 Mφs identified thousands of differentially expressed known and novel lncRNAs. We characterized three Mφ-enriched lncRNAs LRRC75A-AS1, GAPLINC and AL139099.5 in polarization and innate immunity. Knockdown of LRRC75A-AS1 and GAPLINC downregulated the Mφ differentiation markers and skewed Mφ polarization by decreasing M1 markers without a significant impact on M2 markers. LRRC75A-AS1 and GAPLINC knockdown also attenuated bacterial phagocytosis, antigen processing and inflammatory cytokine secretion in Mφs, supporting their functional role in potentiating innate immune functions. Mechanistically, LRRC75A-AS1 and GAPLINC knockdown impaired Mφ migration by downregulating the expression of multiple cytoskeletal signaling pathways suggesting their critical role in regulating Mφ migration. Finally, we showed that LRRC75A-AS1 and GAPLINC were upregulated in periodontitis and their expression correlates with higher M1 markers suggesting their role in macrophage polarization in vivo. CONCLUSION: Our results show that polarized Mφs acquire a unique lncRNA repertoire and identified many previously unknown lncRNA sequences. LRRC75A-AS1 and GAPLINC, which are induced in periodontitis, regulate Mφ polarization and innate immune functions supporting their critical role in inflammation.


Assuntos
Imunidade Inata , Macrófagos , RNA Longo não Codificante , RNA Longo não Codificante/genética , Humanos , Macrófagos/imunologia , Diferenciação Celular , Fagocitose , Citocinas/metabolismo , Gengiva/imunologia , Células Cultivadas , Periodontite/imunologia , Periodontite/genética
3.
J Cell Physiol ; 239(5): e31225, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403999

RESUMO

Innate immune response is regulated by tissue resident or infiltrating immune cells such as macrophages (Mφ) that play critical role in tissue development, homeostasis, and repair of damaged tissue. However, the epigenetic mechanisms that regulate Mφ plasticity and innate immune functions are not well understood. Long non-coding RNA (lncRNA) are among the most abundant class of transcriptome but their function in myeloid cell biology is less explored. In this study, we deciphered the regulatory role of previously uncharacterized lncRNAs in Mφ polarization and innate immune responses. Two lncRNAs showed notable changes in their levels during M1 and M2 Mφ differentiation. Our findings indicate that LINC01010 expression increased and AC007032 expression decreased significantly. LINC01010 exhibit myeloid cell-specificity, while AC007032.1 is ubiquitous and expressed in both myeloid and lymphoid (T cells, B cells and NK cells) cells. Expression of these lncRNAs is dysregulated in periodontal disease (PD), a microbial biofilm-induced immune disease, and responsive to lipopolysaccharide (LPS) from different oral and non-oral bacteria. Knockdown of LINC01010 but not AC007032.1 reduced the surface expression of Mφ differentiation markers CD206 and CD68, and M1Mφ polarization markers MHCII and CD32. Furthermore, LINC01010 RNAi attenuated bacterial phagocytosis, antigen processing and cytokine secretion suggesting its key function in innate immunity. Mechanistically, LINC01010 knockdown Mφ treated with Escherichia coli LPS exhibit significantly reduced expression of multiple nuclear factor kappa B pathway genes. Together, our data highlight functional role of a PD-associated lncRNA LINC01010 in shaping macrophage differentiation, polarization, and innate immune activation.


Assuntos
Diferenciação Celular , Imunidade Inata , Macrófagos , NF-kappa B , RNA Longo não Codificante , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Imunidade Inata/genética , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/genética , Macrófagos/imunologia , Macrófagos/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais
4.
Pathogens ; 13(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38251365

RESUMO

The oral cavity is a niche for diverse microbes, including viruses. Members of the Herpesviridae family, comprised of dsDNA viruses, as well as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an ssRNA virus, are among the most prevalent viruses infecting the oral cavity, and they exhibit clinical manifestations unique to oral tissues. Viral infection of oral mucosal epithelia triggers an immune response that results in prolonged inflammation. The clinical and systemic disease manifestations of HHV have been researched extensively, and several recent studies have illuminated the relationship between HHV and oral inflammatory diseases. Burgeoning evidence suggests the oral manifestation of SARS-CoV-2 infection includes xerostomia, dysgeusia, periodontal disease, mucositis, and opportunistic viral and bacterial infections, collectively described as oral post-acute sequelae of COVID-19 (PASC). These diverse sequelae could be a result of intensified immune responses initially due to the copious production of proinflammatory cytokines: the so-called "cytokine storm syndrome", facilitating widespread oral and non-oral tissue damage. This review explores the interplay between HHV, SARS-CoV-2, and oral inflammatory diseases such as periodontitis, endodontic disease, and peri-implantitis. Additionally, the review discusses proper diagnostic techniques for identifying viral infection and how viral diagnostics can lead to improved overall patient health.

5.
Front Immunol ; 14: 1214810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860007

RESUMO

Macrophages (Mφ) are long-lived myeloid cells that can polarize towards the proinflammatory M1 or proresolving M2 phenotype to control diverse biological processes such as inflammation, tissue damage, and regeneration. Noncoding RNA are a class of nonprotein-coding transcriptome with numerous interdependent biological roles; however, their functional interaction in the regulation of Mφ polarization and immune responses remain unclear. Here, we show antagonistic relationship between lncRNA (MALAT1) and microRNA (miR-30b) in shaping macrophage polarization and immune functions. MALAT1 expression displays a time-dependent induction during Mφ differentiation and, upon challenge with TLR4 agonist (E. coli LPS). MALAT1 knockdown promoted the expression of M2Mφ markers without affecting M1Mφ markers, suggesting that MALAT1 favors the M1 phenotype by suppressing M2 differentiation. Compared to the control, MALAT1 knockdown resulted in reduced antigen uptake and processing, bacterial phagocytosis, and bactericidal activity, strongly supporting its critical role in regulating innate immune functions in Mφ. Consistent with this, MALAT1 knockdown showed impaired cytokine secretion upon challenge with LPS. Importantly, MALAT1 exhibit an antagonistic expression pattern with all five members of the miR-30 family during M2 Mφ differentiation. Dual-luciferase assays validated a novel sequence on MALAT1 that interacts with miR-30b, a microRNA that promotes the M2 phenotype. Phagocytosis and antigen processing assays unequivocally demonstrated that MALAT1 and miR-30b are functionally antagonistic. Concurrent MALAT1 knockdown and miR-30b overexpression exhibited the most significant attenuation in both assays. In human subjects with periodontal disease and murine model of ligature-induced periodontitis, we observed higher levels of MALAT1, M1Mφ markers and downregulation of miR-30b expression in gingival tissues suggesting a pro-inflammatory function of MALAT1 in vivo. Overall, we unraveled the role of MALAT1 in Mφ polarization and delineated the underlying mechanism of its regulation by involving MALAT-1-driven miR-30b sequestration.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Camundongos , Escherichia coli/genética , Lipopolissacarídeos , Macrófagos/metabolismo , RNA Longo não Codificante/metabolismo
6.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834408

RESUMO

The mTOR signaling pathway plays a pivotal and intricate role in the pathogenesis of glioblastoma, driving tumorigenesis and proliferation. Mutations or deletions in the PTEN gene constitutively activate the mTOR pathway by expressing growth factors EGF and PDGF, which activate their respective receptor pathways (e.g., EGFR and PDGFR). The convergence of signaling pathways, such as the PI3K-AKT pathway, intensifies the effect of mTOR activity. The inhibition of mTOR has the potential to disrupt diverse oncogenic processes and improve patient outcomes. However, the complexity of the mTOR signaling, off-target effects, cytotoxicity, suboptimal pharmacokinetics, and drug resistance of the mTOR inhibitors pose ongoing challenges in effectively targeting glioblastoma. Identifying innovative treatment strategies to address these challenges is vital for advancing the field of glioblastoma therapeutics. This review discusses the potential targets of mTOR signaling and the strategies of target-specific mTOR inhibitor development, optimized drug delivery system, and the implementation of personalized treatment approaches to mitigate the complications of mTOR inhibitors. The exploration of precise mTOR-targeted therapies ultimately offers elevated therapeutic outcomes and the development of more effective strategies to combat the deadliest form of adult brain cancer and transform the landscape of glioblastoma therapy.


Assuntos
Glioblastoma , Humanos , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de MTOR , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
7.
Semin Cell Dev Biol ; 124: 34-47, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34446356

RESUMO

T lymphocytes are an integral component of adaptive immunity with pleotropic effector functions. Impairment of T cell activity is implicated in various immune pathologies including autoimmune diseases, AIDS, carcinogenesis, and periodontitis. Evidently, T cell differentiation and function are under robust regulation by various endogenous factors that orchestrate underlying molecular pathways. MicroRNAs (miRNA) are a class of noncoding, regulatory RNAs that post-transcriptionally control multiple mRNA targets by sequence-specific interaction. In this article, we will review the recent progress in our understanding of miRNA-gene networks that are uniquely required by specific T cell effector functions and provide miRNA-mediated mechanisms that govern the fate of T cells. A subset of miRNAs may act in a synergistic or antagonistic manner to exert functional suppression of genes and regulate pathways that control T cell activation and differentiation. Significance of T cell-specific miRNAs and their dysregulation in immune-mediated diseases is discussed. Exosome-mediated horizontal transfer of miRNAs from antigen presenting cells (APCs) to T cells and from one T cell to another T cell subset and their impact on recipient cell functions is summarized.


Assuntos
MicroRNAs , Diferenciação Celular , Redes Reguladoras de Genes , Ativação Linfocitária , MicroRNAs/genética , MicroRNAs/metabolismo , Linfócitos T
8.
Front Immunol ; 11: 604981, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362791

RESUMO

Macrophages (Mφ) are immune cells that exhibit remarkable functional plasticity. Identification of novel endogenous factors that can regulate plasticity and innate immune functions of Mφ will unravel new strategies to curb immune-related diseases. Long non-coding RNAs (lncRNAs) are a class of endogenous, non-protein coding, regulatory RNAs that are increasingly being associated with various cellular functions and diseases. Despite their ubiquity and abundance, lncRNA-mediated epigenetic regulation of Mφ polarization and innate immune functions is poorly studied. This study elucidates the regulatory role of lncRNAs in monocyte to Mφ differentiation, M1/M2 dichotomy and innate immune responses. Expression profiling of eighty-eight lncRNAs in monocytes and in vitro differentiated M2 Mφ identified seventeen differentially expressed lncRNAs. Based on fold-change and significance, we selected four differentially expressed lncRNAs viz., RN7SK, GAS5, IPW, and ZFAS1 to evaluate their functional impact. LncRNA knockdown was performed on day 3 M2 Mφ and the impact on polarization was assessed on day 7 by surface marker analysis. Knockdown of RN7SK and GAS5 showed downregulation of M2 surface markers (CD163, CD206, or Dectin) and concomitant increase in M1 markers (MHC II or CD23). RN7SK or GAS5 knockdown showed no significant impact on CD163, CD206, or CD23 transcripts. M1/M2 markers were not impacted by IPW or ZFAS1 knockdown. Functional regulation of antigen uptake/processing and phagocytosis, two central innate immune pathways, by candidate lncRNA was assessed in M1/M2 Mφ. Compared to scramble, enhanced antigen uptake and processing were observed in both M1/M2 Mφ transfected with siRNA targeting GAS5 and RN7SK but not IPW and ZFAS1. In addition, knockdown of RN7SK significantly augmented uptake of labelled E. coli in vitro by M1/M2 Mφ, while no significant difference was in GAS5 silencing cells. Together, our results highlight the instrumental role of lncRNA (RN7SK and GAS5)-mediated epigenetic regulation of macrophage differentiation, polarization, and innate immune functions.


Assuntos
Diferenciação Celular , Plasticidade Celular , Imunidade Inata , Macrófagos/metabolismo , RNA Longo não Codificante/metabolismo , Antígenos , Células Cultivadas , Epigênese Genética , Escherichia coli/imunologia , Escherichia coli/metabolismo , Corantes Fluorescentes/metabolismo , Regulação da Expressão Gênica , Humanos , Macrófagos/imunologia , Ovalbumina/imunologia , Ovalbumina/metabolismo , Fagocitose , Fenótipo , Proteólise , RNA Longo não Codificante/genética , Transdução de Sinais
9.
Curr Pharm Des ; 26(4): 446-454, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31924149

RESUMO

Interferons are secreted cytokines with potent antiviral, antitumor and immunomodulatory functions. As the first line of defense against viruses, this pathway restricts virus infection and spread. On the contrary, viruses have evolved ingenious strategies to evade host immune responses including the interferon pathway. Multiple families of viruses, in particular, DNA viruses, encode microRNA (miR) that are small, non-protein coding, regulatory RNAs. Virus-derived miRNAs (v-miR) function by targeting host and virus-encoded transcripts and are critical in shaping host-pathogen interaction. The role of v-miRs in viral pathogenesis is emerging as demonstrated by their function in subverting host defense mechanisms and regulating fundamental biological processes such as cell survival, proliferation, modulation of viral life-cycle phase. In this review, we will discuss the role of v-miRs in the suppression of host genes involved in the viral nucleic acid detection, JAK-STAT pathway, and cytokine-mediated antiviral gene activation to favor viral replication and persistence. This information has yielded new insights into our understanding of how v-miRs promote viral evasion of host immunity and likely provide novel antiviral therapeutic targets.


Assuntos
Interações Hospedeiro-Patógeno/genética , Interferons/imunologia , MicroRNAs , RNA Viral/genética , Humanos , MicroRNAs/genética , Transdução de Sinais , Replicação Viral
10.
J Endod ; 45(9): 1106-1113.e2, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31351582

RESUMO

INTRODUCTION: External cervical resorption (ECR) has been challenging for its diagnosis, prevention, and treatment. Its etiology and pathogenesis are largely unknown. This study characterized microRNA (miRNA) expression patterns of human tissues from ECR lesions and identified potential messenger RNA targets and pathways. METHODS: Granulomatous tissues from ECR (n = 5) and their adjacent nonaffected asymptomatic gingival connective tissues (n = 5) were collected. Similarly, chronic periodontitis (CP) and control samples were collected (n = 3). Quantitative reverse transcription polymerase chain reaction array analysis compared the expression profiles of 88 miRNAs between diseases. Differentially expressed miRNAs were identified using the Student t test. Bioinformatics for messenger RNA (miRWalk) and KEGG pathway analyses were performed to identify predicted target genes and biological/cellular functions and signaling pathways. RESULTS: Three miRNAs (miR-20a-5p, miR-210-3p, and miR-99a-4p) were significantly down-regulated and 1 miRNA (miR-122-5p) was significantly up-regulated in ECR (P < .05). One up-regulated and 1 down-regulated miRNA reached the significance threshold in CP. A comparison of miRNA expression in ECR and CP identified 3 differentially expressed miRNAs, indicating differences in disease pathobiology. Inflammation-associated Wnt, PI3K-Akt, mitogen-activated protein kinases signaling, and bone formation-associated transforming growth factor beta pathways were identified and predicted to be modulated by differentially expressed miRNAs in both ECR and CP. Biological processes unique to each disease entity were identified, such as T- and B-cell receptor signaling pathways, osteoclast differentiation, and extracellular matrix-receptor interaction for CP. Glycosaminoglycan biosynthesis, mineral absorption, and insulin signaling pathways for ECR were identified. CONCLUSIONS: This proof-of-principle in vivo study indicated that ECR has both common and unique miRNA expression profiles in comparison with CP, which are predicted to target genes regulating inflammation, immunity, and metabolism of mineralized tissues.


Assuntos
Perfilação da Expressão Gênica , MicroRNAs , Periodontite , Biologia Computacional , Humanos , MicroRNAs/metabolismo , Periodontite/metabolismo , Fosfatidilinositol 3-Quinases , Transdução de Sinais
11.
Front Immunol ; 9: 2099, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319604

RESUMO

The oral cavity incessantly encounters a plethora of microorganisms. Effective and efficient oral innate and adaptive immune responses are incumbent to maintain healthy mucosa. A higher prevalence of Human Herpesviruses (HHV), a family of large enveloped DNA viruses, has been reported in multiple oral inflammatory diseases suggesting their involvement in disease progression. However, the viral components contributing to oral disease remain obscure. MicroRNAs (miRNA) are non-protein coding, single stranded ribonucleic acid (RNA) molecules that post-transcriptionally regulate diverse messenger RNAs. Thus, miRNAs can control large repertoire of biological processes. Changes in miRNA expression are associated with various oral infections and diseases. Cellular miRNAs can act as pro- or anti-viral factors and dysregulation of host miRNA expression occurs during herpesviruses infection. This strongly suggest a critical role of cellular miRNAs in host-herpesvirus interaction. Interestingly, HHV also encode multiple miRNAs (called viral miRNAs) that may play key role in host-pathogen interaction by modulating both host biological pathways and controlling viral life cycle. Recent studies from our laboratory have identified viral miRNAs (v-miRs) in diseased oral tissue biopsies and demonstrate their immunomodulatory roles. This review discusses the association of miRNAs (both host and viral) and herpesviruses in the pathogenesis of oral inflammatory diseases.


Assuntos
Infecções por Herpesviridae/imunologia , Herpesviridae/genética , Interações Hospedeiro-Patógeno/imunologia , MicroRNAs/metabolismo , Doenças da Boca/imunologia , Biópsia , Regulação da Expressão Gênica/imunologia , Herpesviridae/imunologia , Herpesviridae/isolamento & purificação , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , MicroRNAs/isolamento & purificação , Doenças da Boca/genética , Doenças da Boca/patologia , Doenças da Boca/virologia , Mucosa Bucal/imunologia , Mucosa Bucal/patologia , Mucosa Bucal/virologia , RNA Viral/isolamento & purificação , RNA Viral/metabolismo
12.
Data Brief ; 19: 249-255, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29892642

RESUMO

Herpesviruses have evolved to encode multiple microRNAs [viral miRNAs (v-miRs)], a unique feature of this family of double stranded DNA (dsDNA) viruses. However, functional role of these v-miRs in host-pathogen interaction remains poorly studied. In this data, we examined the impact of oral disease associated v-miRs viz., miR-H1 [encoded by herpes simplex virus 1 (HSV1)] and miR-K12-3 [encoded by Kaposi sarcoma-associated herpesvirus (KSHV)] by identifying putative targets of viral miRNAs. We used our published microarray data (GSE107005) to identify the transcripts downregulated by the v-miRs. The 3' untranslated region (UTR) of these genes were extracted using BioMart tool on Ensembl and subjected to RNA:RNA interaction employing RNA Hybrid. We obtained hundreds of potential and novel miR-H1 and miR-K12-3 binding sites on the 3'UTR of the genes downregulated by these v-miRs. The information can provide likely regulatory mechanisms of the candidate v-miRs through which they can exert biological impact during herpesvirus infection and pathogenesis.

13.
Front Immunol ; 9: 433, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559974

RESUMO

Prevalence of the members of herpesvirus family in oral inflammatory diseases is increasingly acknowledged suggesting their likely role as an etiological factor. However, the underlying mechanisms remain obscure. In our recent miRNA profiling of healthy and diseased human tooth pulps, elevated expression of human herpesvirus encoded viral microRNAs (v-miRs) were identified. Based on the fold induction and significance values, we selected three v-miRs namely miR-K12-3-3p [Kaposi sarcoma-associated virus (KSHV)], miR-H1 [herpes simplex virus 1 (HSV1)], and miR-UL-70-3p [human cytomegalovirus (HCMV)] to further examine their impact on host cellular functions. We examined their impact on cellular miRNA profiles of primary human oral keratinocytes (HOK). Our results show differential expression of several host miRNAs in v-miR-transfected HOK. High levels of v-miRs were detected in exosomes derived from v-miR transfected HOK as well as the KSHV-infected cell lines. We show that HOK-derived exosomes release their contents into macrophages (Mφ) and alter expression of endogenous miRNAs. Concurrent expression analysis of precursor (pre)-miRNA and mature miRNA suggest transcriptional or posttranscriptional impact of v-miRs on the cellular miRNAs. Employing bioinformatics, we predicted several pathways targeted by deregulated cellular miRNAs that include cytoskeletal organization, endocytosis, and cellular signaling. We validated three novel targets of miR-K12-3-3p and miR-H1 that are involved in endocytic and intracellular trafficking pathways. To evaluate the functional consequence of this regulation, we performed phagocytic uptake of labeled bacteria and noticed significant attenuation in miR-H1 and miR-K12-3-3p but not miR-UL70-3p transfected primary human Mφ. Multiple cytokine analysis of E. coli challenged Mφ revealed marked reduction of secreted cytokine levels with important roles in innate and adaptive immune responses suggesting a role of v-miRs in immune subversion. Our findings reveal that oral disease associated v-miRs can dysregulate functions of key host cells that shape oral mucosal immunity thus exacerbating disease severity and progression.


Assuntos
Citomegalovirus/genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 8/genética , Inflamação/genética , Queratinócitos/fisiologia , MicroRNAs/genética , RNA Viral/genética , Doenças Estomatognáticas/genética , Viroses/genética , Linhagem Celular , Biologia Computacional , Citoesqueleto/genética , Endocitose/genética , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Transdução de Sinais/genética
14.
Biochim Biophys Acta Gene Regul Mech ; 1861(5): 497-508, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29550353

RESUMO

MicroRNAs (miRNAs) are small, non-coding RNAs of ~18-25 nucleotides that have gained extensive attention as critical regulators in complex gene networks including immune cell lineage commitment, differentiation, maturation, and maintenance of immune homeostasis and function. Many viruses encode miRNAs that directly downregulate the expression of factors of the innate immune system, which includes proteins involved in promoting apoptosis and recruitment. In this study, we examined the expression profiles of three previously identified viral miRNAs (v-miRs) from the human herpesvirus (HHV) family, HSV-1 (miR-H1), KSHV (miR-K12-3-3p), and HCMV (miR-US4) in healthy and diseased periodontal tissues and observed increased levels of v-miRs in diseased tissues. To understand the significance of this increase, we overexpressed v-miRs in human oral keratinocytes (HOK), a common target for various HHV, and analyzed the impact of miR-H1 and miR-K12-3-3p on the host transcriptome. More than 1300 genes were altered in HOK overexpressing miR-H1 and miR-K12-3-3p. Global pathway analysis of deregulated genes identified several key cellular pathways that may favor viral persistence. Using bioinformatic analysis, we predicted hundreds of potential v-miR binding sites on genes downregulated by miR-H1 and miR-K12-3-3p and validated three novel target v-miR sites suggesting widespread direct and indirect modulation of numerous host genes/pathways by a single v-miR. Finally, in vitro HSV-1 infection assays showed that miR-H1 can regulate viral entry and infection in human oral keratinocytes (HOK). Overall, our results demonstrate clinical and functional relevance of pathogenic viral molecules viz., v-miRs that regulate both host and viral functions and may contribute to the pathogenesis of inflammatory oral diseases.


Assuntos
MicroRNAs/genética , Doenças Periodontais/genética , Transcriptoma/genética , Viroses/genética , Sítios de Ligação , Regulação Viral da Expressão Gênica , Gengiva/metabolismo , Gengiva/patologia , Gengiva/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/patogenicidade , Humanos , Queratinócitos/metabolismo , Queratinócitos/virologia , Doenças Periodontais/virologia , RNA Viral/genética , Viroses/virologia
15.
Front Immunol ; 9: 481, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593731

RESUMO

Neutropenic conditions are prevalent in leukemia patients and are often associated with increased susceptibility to infections. In fact, emergency granulopoiesis (EG), a process regulating neutrophil homeostasis in inflammatory conditions and infections, may occur improperly in leukemic conditions, leading to reduced neutrophil counts. Unfortunately, the mechanisms central to dysfunctional EG remain understudied in both leukemia patients and leukemic mouse models. However, despite no direct studies on EG response in leukemia are reported, recently certain transcription factors (TFs) have been found to function at the crossroads of leukemia and EG. In this review, we present an update on TFs that can potentially govern the fate of EG in leukemia. Transcriptional control of Fanconi DNA repair pathway genes is also highlighted, as well as the newly discovered role of Fanconi proteins in innate immune response and EG. Identifying the TFs regulating EG in leukemia and dissecting their underlying mechanisms may facilitate the discovery of therapeutic drugs for the treatment of neutropenia.


Assuntos
Infecções/genética , Leucemia/genética , Neutropenia/genética , Neutrófilos/fisiologia , Animais , Reparo do DNA/genética , Modelos Animais de Doenças , Hematopoese/genética , Humanos , Infecções/complicações , Leucemia/complicações , Camundongos , Neutropenia/complicações , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
16.
J Leukoc Biol ; 98(2): 195-207, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25990241

RESUMO

miRNAs are ubiquitous regulators of human biology. Parallel profiling of in vitro monocyte-to-Mφ and monocyte-to-DC differentiation revealed static, convergent, and divergent expression of miRNA. Bioinformatic and network analysis of differentially expressed miRNAs implicated miR-24, miR-30b, and miR-142-3p as negative regulators of intracellular signaling pathways, triggered not only by differentiation factors (M-CSF/GM-CSF/IL-4) but also from PRRs. Manipulation of miR-24, miR-30b, and miR-142-3p expression during the differentiation of mD-Mφ and mD-DC differentiation had minimal impact on the acquisition of phenotype but significantly abrogated the ability of these cells to mount inflammatory responses to pathogen-associated stimuli. Forced expression of these miRNAs, which are down-regulated during differentiation, inhibited release of inflammatory cytokines [TNF-α, IL-12(p40), IL-6] upon stimulation with LPS. Functional analysis revealed overlapping mechanisms of inhibition, including surface expression of TLR4/CD14/MD-1 and intracellular PKCα/NF-κB activation. Potential intermediary targets of the TLR4-NF-κB axis included members of the PI3K and MAPK families and PKC isoforms. These results demonstrate the requirement of miR-24, miR-30b, and miR-142-3p down-regulation for the generation of fully functional Mφs and DCs.


Assuntos
Células Dendríticas/imunologia , Imunidade Inata , Macrófagos/imunologia , MicroRNAs/imunologia , Diferenciação Celular , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/patologia , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Subunidade p40 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Lipopolissacarídeos/farmacologia , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , MicroRNAs/genética , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
17.
J Clin Cell Immunol ; 6(5)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26807309

RESUMO

OBJECTIVE: MicroRNAs (miRNA) are ubiquitous regulators of human biology and immunity. Previously, we have demonstrated an inhibitory role for miR-24 in the phagocytosis of Escherichia coli and Staphylococcus aureus bioparticles and the induction of cytokine secretion in response to lipopolysaccharide (LPS) of the same origin; also, we have identified divergent and convergent miRNA responses to LPS from the periodontopathic pathogens Aggregatibacter actinomycetemcomitams (Aa) and Porphyromonas gingivalis (Pg), and revealed cigarette smoke extract as an environmental modifier of Pg LPS structure (Pg CSE) impacting macrophage miRNA responses. This study was designed to investigate the role of miR-24 on macrophage polarization and plasticity. METHODS: Primary human macrophages were differentiated from CD14+ monocytes isolated from peripheral blood mononuclear cells (PBMCs) by MACS positive selection and transfected with miR-24 miRNA mimics, inhibitors, or negative control mimic; followed by stimulation with cytokines and/or LPS under various conditions representing key stages of macrophage activation. Macrophage activation and polarization was assessed using assays for cytokine production (ELISA) and protein expression (flow cytometry, immunoblot). MiR-24 expression was assessed by RT-PCR. RESULTS: Stimulation of macrophages with LPSs of Aa, Pg, and Pg CSE origin resulted in dissimilar levels of cytokine expression and differential expression of miR-24. Overexpression of miR-24 inhibited cytokine secretion in response to LPS. Priming of macrophages with interferon gamma (IFN-γ) did not overcome this inhibitory effect, but classical activation of macrophages with IFN-γ plus TNF-α, TNF-ß, or IL-17, modulated the pattern of miR-24 mediated suppression in a cytokine-specific fashion. Overexpression of miR-24 enhanced CD206 upregulation during alternative macrophage activation and inhibited its downregulation in macrophage transitioning from alternative to classical activation states. Overexpression of miR-24 resulted in reduced expression of the Class 1A PI 3-kinase subunit p110 delta (p110δ). CONCLUSION: Pathogen- and environment-specific modifications in LPS alter the expression of cytokines and miR-24 in human macrophages. MiR-24 is a negative regulator of macrophage classical activation by LPS and promotes alternative activation under conditions of polarization and plasticity. MiR-24 mediated inhibition of LPS-induced cytokine secretion is dependent upon macrophage activation state at the point of stimulation, and this may be due to the degree to which p110δ is involved in the intracellular signaling pathway/s that transduce receptor ligation into cytokine induction. While important differences were observed in the effect of miR-24 on macrophages, these data indicate that overexpression of miR-24 would be predominantly anti-inflammatory.

18.
Innate Immun ; 20(5): 540-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24062196

RESUMO

MicroRNAs (miRNAs) are a class of small, noncoding RNAs that regulate post-transcriptional expression of their respective target genes and are responsive to various stimuli, including LPS. Here we examined the early (4 h) miRNA responses of THP1-differentiated macrophages challenged with LPS derived from the periodontal pathogens, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis or environmentally-modified LPS obtained from P. gingivalis grown in cigarette smoke extract. Predicted miRNA-gene target interactions for LPS-responsive miR-29b and let-7f were confirmed using dual-luciferase assays and by transfection experiments using miRNA mimics and inhibitors. Convergent and divergent miRNA profiles were observed in treated samples where differences in miRNA levels related to the type, concentration and incubation times of LPS challenge. Dual-luciferase experiments revealed miR-29b targeting of interleukin-6 receptorα (IL-6Rα) and IFN-γ inducible protein 30 and let-7f targeting of suppressor of cytokine signaling 4 and thrombospondin-1. Transfection experiments confirmed miR-29b and let-7f modulation of IL-6Rα and SOCS4 protein expression levels, respectively. Thus, we have demonstrated convergent/divergent miRNA responses to wild type LPS and its environmentally-modified LPS, and demonstrate miRNA targeting of key genes linked to inflammation and immunity. Our data indicate that these LPS-responsive miRNAs may play a key role in fine-tuning the host response to periodontal pathogens.


Assuntos
Aggregatibacter actinomycetemcomitans/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , MicroRNAs/biossíntese , Porphyromonas gingivalis/metabolismo , RNA Bacteriano/biossíntese , Aggregatibacter actinomycetemcomitans/genética , Linhagem Celular , Humanos , Interleucina-6/biossíntese , Interleucina-6/genética , Macrófagos/efeitos dos fármacos , MicroRNAs/genética , Porphyromonas gingivalis/genética , RNA Bacteriano/genética , Proteínas Supressoras da Sinalização de Citocina/biossíntese , Proteínas Supressoras da Sinalização de Citocina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA