Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Immunol ; 365: 104380, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34049012

RESUMO

The early interactions between the vaccine Mycobacterium bovis Bacillus Calmette Guerin (BCG) and host peripheral innate immune cells like Mast cells (MCs) may pave the way for generating appropriate protective innate and adaptive immune responses. Mice on administration of BCG by intratracheal instillation showed a massive increase in MC numbers in the infected lung. In vitro co-culture of BCG and rodent Rat Basophilic Leukaemia (RBL-2H3) MCs led to significant killing of BCG. RBL-2H3 MCs were able to phagocytose BCG, take up BCG-derived antigens by macropinocytosis, generate Reactive Oxygen Species (ROS) and degranulate. Further, a few MCs died and released MC extracellular traps (MCETs) having DNA, histones and tryptase to trap BCG. This study highlights the multi-pronged effector responses of MCs on encountering BCG. These responses or their evasion may lead to success or failure of BCG vaccine to provide long term immunity to infections.


Assuntos
Vacina BCG/imunologia , Armadilhas Extracelulares/metabolismo , Pulmão/imunologia , Mastócitos/imunologia , Mycobacterium bovis/imunologia , Animais , Linhagem Celular , Técnicas de Cocultura , Humanos , Imunidade Inata , Imunomodulação , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Ratos , Espécies Reativas de Oxigênio/metabolismo , Triptases/metabolismo
2.
Front Cell Infect Microbiol ; 10: 564565, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33163415

RESUMO

Mycobacterium tuberculosis (M. tb), the intracellular pathogen causing tuberculosis, has developed mechanisms that endow infectivity and allow it to modulate host immune response for its survival. Genomic and proteomic analyses of non-pathogenic and pathogenic mycobacteria showed presence of genes and proteins that are specific to M. tb. In silico studies predicted that M.tb Rv1954A is a hypothetical secretory protein that exhibits intrinsically disordered regions and possess B cell/T cell epitopes. Treatment of macrophages with Rv1954A led to TLR4-mediated activation with concomitant increase in secretion of pro-inflammatory cytokines, IL-12 and TNF-α. In vitro studies showed that rRv1954A protein or Rv1954A knock-in M. smegmatis (Ms_Rv1954A) activates macrophages by enhancing the expression of CD80 and CD86. An upregulation in the expression of CD40 and MHC I/II was noted in the presence of Rv1954A, pointing to its role in enhancing the association of APCs with T cells and in the modulation of antigen presentation, respectively. Ms_Rv1954A showed increased infectivity, induction of ROS and RNS, and apoptosis in RAW264.7 macrophage cells. Rv1954A imparted protection against oxidative and nitrosative stress, thereby enhancing the survival of Ms_Rv1954A inside macrophages. Mice immunized with Ms_Rv1954A showed that splenomegaly and primed splenocytes restimulated with Rv1954A elicited a Th1 response. Infection of Ms_Rv1954A in mice through intratracheal instillation leads to enhanced infiltration of lymphocytes in the lungs without formation of granuloma. While Rv1954A is immunogenic, it did not cause adverse pathology. Purified Rv1954A or Rv1954A knock-in M. smegmatis (Ms_Rv1954A) elicited a nearly two-fold higher titer of IgG response in mice, and PTB patients possess a higher IgG titer against Rv1954A, also pointing to its utility as a diagnostic marker for TB. The observed modulation of innate and adaptive immunity renders Rv1954A a vital protein in the pathophysiology of this pathogen.


Assuntos
Mycobacterium tuberculosis , Animais , Proteínas de Bactérias/genética , Citocinas , Humanos , Imunidade , Ativação de Macrófagos , Camundongos , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Proteômica
3.
Front Immunol ; 11: 1199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793184

RESUMO

Mycobacterium tuberculosis (M. tb) persists as latent infection in nearly a quarter of the global population and remains the leading cause of death among infectious diseases. While BCG is the only vaccine for TB, its inability to provide complete protection makes it imperative to engineer BCG such that it expresses immunodominant antigens that can enhance its protective potential. In-silico comparative genomic analysis of Mycobacterium species identified M. tb Rv1507A as a "signature protein" found exclusively in M. tb. In-vitro (cell lines) and in-vivo experiments carried out in mice, using purified recombinant Rv1507A revealed it to be a pro-inflammatory molecule, eliciting significantly high levels of IL-6, TNF-α, and IL-12. There was increased expression of activation markers CD69, CD80, CD86, antigen presentation molecules (MHC I/MHCII), and associated Th1 type of immune response. Rv1507A knocked-in M. smegmatis also induced significantly higher pro-inflammatory Th1 response and higher survivability under stress conditions, both in-vitro (macrophage RAW264.7 cells) and in-vivo (mice). Sera derived from human TB patients showed significantly enhanced B-cell response against M. tb Rv1507A. The ability of M. tb Rv1507A to induce immuno-modulatory effect, B cell response, and significant memory response, renders it a putative vaccine candidate that demands further exploration.


Assuntos
Antígenos de Bactérias/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Células Th1/imunologia , Tuberculose/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Humanos , Epitopos Imunodominantes , Camundongos , Vacinas contra a Tuberculose/imunologia
4.
Sci Rep ; 9(1): 8508, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186458

RESUMO

Glycosylphosphatidylinositol (GPI)-anchored proteins are important for virulence of many pathogenic organisms including the human fungal pathogen, Candida albicans. GPI biosynthesis is initiated by a multi-subunit enzyme, GPI-N-acetylglucosaminyltransferase (GPI-GnT). We showed previously that two GPI-GnT subunits, encoded by CaGPI2 and CaGPI19, are mutually repressive. CaGPI19 also co-regulates CaERG11, the target of azoles while CaGPI2 controls Ras signaling and hyphal morphogenesis. Here, we investigated the role of a third subunit. We show that CaGpi15 is functionally homologous to Saccharomyces cerevisiae Gpi15. CaGPI15 is a master activator of CaGPI2 and CaGPI19. Hence, CaGPI15 mutants are azole-sensitive and hypofilamentous. Altering CaGPI19 or CaGPI2 expression in CaGPI15 mutant can elicit alterations in azole sensitivity via CaERG11 expression or hyphal morphogenesis, respectively. Thus, CaGPI2 and CaGPI19 function downstream of CaGPI15. One mode of regulation is via H3 acetylation of the respective GPI-GnT gene promoters by Rtt109. Azole sensitivity of GPI-GnT mutants is also due to decreased H3 acetylation at the CaERG11 promoter by Rtt109. Using double heterozygous mutants, we also show that CaGPI2 and CaGPI19 can independently activate CaGPI15. CaGPI15 mutant is more susceptible to killing by macrophages and epithelial cells and has reduced ability to damage either of these cell lines relative to the wild type strain, suggesting that it is attenuated in virulence.


Assuntos
Azóis/farmacologia , Vias Biossintéticas , Candida albicans/enzimologia , Proteínas Fúngicas/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Subunidades Proteicas/metabolismo , Animais , Vias Biossintéticas/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Linhagem Celular , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Cromossomos Fúngicos/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Ergosterol/biossíntese , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos , Heterozigoto , Hifas/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Mutação/genética , Fagocitose/efeitos dos fármacos , Fenótipo , Subunidades Proteicas/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Virulência/efeitos dos fármacos
5.
Sci Rep ; 7(1): 13240, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038500

RESUMO

Mast Cells (MCs) are one of the first immune cells encountered by invading pathogens. Their presence in large numbers in the superficial dermis, where Leishmania is encountered, suggests that they may play a critical role in immune responses to Leishmania. In this study the interactions of Leishmania donovani, the causative agent of visceral Leishmaniasis, and Leishmania tropica, the causative agent of cutaneous Leishmaniasis with MCs were studied. Co-culture of Leishmania with Peritoneal Mast Cells (PMCs) from BALB/c mice and Rat Basophilic Leukaemia (RBL-2H3) MCs led to significant killing of L. tropica and to a lesser extent of L. donovani. Also, while there was significant uptake of L. tropica by MCs, L. donovani was not phagocytosed. There was significant generation of Reactive Oxygen Species (ROS) by MCs on co-culture with these species of Leishmania which may contribute to their clearance. Interactions of MCs with Leishmania led to generation of MC extracellular traps comprising of DNA, histones and tryptase probably to ensnare these pathogens. These results clearly establish that MCs may contribute to host defences to Leishmania in a differential manner, by actively taking up these pathogens, and also by mounting effector responses for their clearance by extracellular means.


Assuntos
Leishmania donovani/imunologia , Leishmania tropica/imunologia , Mastócitos/imunologia , Fagocitose , Animais , Catalase/metabolismo , Morte Celular , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Feminino , Histonas/metabolismo , Mastócitos/metabolismo , Camundongos Endogâmicos BALB C , Ratos , Espécies Reativas de Oxigênio/metabolismo , Triptases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA