Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 89: 104453, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36736132

RESUMO

BACKGROUND: Keratitis ichthyosis deafness (KID) syndrome is a rare disorder caused by hemichannel (HC) activating gain-of-function mutations in the GJB2 gene encoding connexin (Cx) 26, for which there is no cure, or current treatments based upon the mechanism of disease causation. METHODS: We applied Adeno Associated Virus (AAV) mediated mAb gene transfer (AAVmAb) to treat the epidermal features of KID syndrome with a well-characterized HC blocking antibody using male mice of a murine model that replicates the skin pathology of the human disease. FINDINGS: We demonstrate that in vivo AAVmAb treatment significantly reduced the size and thickness of KID lesions, in addition to blocking activity of mutant HCs in the epidermis in vivo. We also show that AAVmAb treatment eliminated abnormal keratinocyte proliferation and enlarged cell size, decreased apoptosis, and restored the normal distribution of keratin expression. INTERPRETATION: Our findings reinforce the critical role played by increased HC activity in the skin pathology associated with KID syndrome. They also underscore the clinical potential of anti-HC mAbs coupled with genetic based delivery systems for treating the underlying mechanistic basis of this disorder. Inhibition of HC activity is an ideal therapeutic target in KID syndrome, and the genetic delivery of mAbs targeted against mutant HCs could form the basis of new therapeutic interventions to treat this incurable disease. FUNDING: Fondazione Telethon grant GGP19148 and University of Padova grant Prot. BIRD187130 to FM; Foundation for Ichthyosis and Related Skin Types (FIRST) and National Institutes of Health grant EY 026911 to TWW.


Assuntos
Conexinas , Surdez , Ictiose , Ceratite , Animais , Masculino , Camundongos , Anticorpos , Conexinas/genética , Surdez/genética , Epiderme/metabolismo , Técnicas de Transferência de Genes , Ictiose/genética , Ictiose/metabolismo , Ictiose/patologia , Ceratite/genética , Ceratite/metabolismo , Ceratite/patologia , Mutação
2.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806342

RESUMO

Connexin (Cx) hemichannels (HCs) are large pore hexameric structures that allow the exchange of ions, metabolites and a variety of other molecules between the cell cytoplasm and extracellular milieu. HC inhibitors are attracting growing interest as drug candidates because deregulated fluxes through HCs have been implicated in a plethora of genetic conditions and other diseases. HC activity has been mainly investigated by electrophysiological methods and/or using HC-permeable dye uptake measurements. Here, we present an all-optical assay based on fluorometric measurements of ionized calcium (Ca2+) uptake with a Ca2+-selective genetically encoded indicator (GCaMP6s) that permits the optical tracking of cytosolic Ca2+ concentration ([Ca2+]cyt) changes with high sensitivity. We exemplify use of the assay in stable pools of HaCaT cells overexpressing human Cx26, Cx46, or the pathological mutant Cx26G45E, under control of a tetracycline (Tet) responsive element (TRE) promoter (Tet-on). We demonstrate the usefulness of the assay for the characterization of new monoclonal antibodies (mAbs) targeting the extracellular domain of the HCs. Although we developed the assay on a spinning disk confocal fluorescence microscope, the same methodology can be extended seamlessly to high-throughput high-content platforms to screen other kinds of inhibitors and/or to probe HCs expressed in primary cells and microtissues.


Assuntos
Cálcio , Conexinas , Transporte Biológico , Cálcio/metabolismo , Conexinas/metabolismo , Humanos , Íons
3.
Function (Oxf) ; 3(1): zqab064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35330924

RESUMO

The epidermis forms an essential barrier against a variety of insults. The overall goal of this study was to shed light not only on the effects of accidental epidermal injury, but also on the mechanisms that support laser skin resurfacing with intra-epidermal focal laser-induced photodamage, a widespread medical practice used to treat a range of skin conditions. To this end, we selectively photodamaged a single keratinocyte with intense, focused and pulsed laser radiation, triggering Ca2+ waves in the epidermis of live anesthetized mice with ubiquitous expression of a genetically encoded Ca2+ indicator. Waves expanded radially and rapidly, reaching up to eight orders of bystander cells that remained activated for tens of minutes, without displaying oscillations of the cytosolic free Ca2+ concentration ([Formula: see text]). By combining in vivo pharmacological dissection with mathematical modeling, we demonstrate that Ca2+ wave propagation depended primarily on the release of ATP, a prime damage-associated molecular patterns (DAMPs), from the hit cell. Increments of the [Formula: see text] in bystander cells were chiefly due to Ca2+ release from the endoplasmic reticulum (ER), downstream of ATP binding to P2Y purinoceptors. ATP-dependent ATP release though connexin hemichannels (HCs) affected wave propagation at larger distances, where the extracellular ATP concentration was reduced by the combined effect of passive diffusion and hydrolysis due to the action of ectonucleotidases, whereas pannexin channels had no role. Bifurcation analysis suggests basal keratinocytes have too few P2Y receptors (P2YRs) and/or phospholipase C (PLC) to transduce elevated extracellular ATP levels into inositol trisphosphate (IP3) production rates sufficiently large to sustain [Formula: see text] oscillations.


Assuntos
Sinalização do Cálcio , Cálcio , Camundongos , Animais , Cálcio/metabolismo , Conexinas/metabolismo , Pele/metabolismo , Trifosfato de Adenosina/metabolismo
4.
Cancers (Basel) ; 13(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34680212

RESUMO

In this study, we used B16-F10 cells grown in the dorsal skinfold chamber (DSC) preparation that allowed us to gain optical access to the processes triggered by photodynamic therapy (PDT). Partial irradiation of a photosensitized melanoma triggered cell death in non-irradiated tumor cells. Multiphoton intravital microscopy with genetically encoded fluorescence indicators revealed that bystander cell death was mediated by paracrine signaling due to adenosine triphosphate (ATP) release from connexin (Cx) hemichannels (HCs). Intercellular calcium (Ca2+) waves propagated from irradiated to bystander cells promoting intracellular Ca2+ transfer from the endoplasmic reticulum (ER) to mitochondria and rapid activation of apoptotic pathways. Combination treatment with S-nitrosoglutathione (GSNO), an endogenous nitric oxide (NO) donor that biases HCs towards the open state, greatly potentiated anti-tumor bystander killing via enhanced Ca2+ signaling, leading to a significant reduction of post-irradiation tumor mass. Our results demonstrate that HCs can be exploited to dramatically increase cytotoxic bystander effects and reveal a previously unappreciated role for HCs in tumor eradication promoted by PDT.

5.
Clin Exp Rheumatol ; 39(1): 158-161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32452348

RESUMO

OBJECTIVES: Our aim was to evaluate subclinical atherosclerosis progression during 5 years of anti-tumour necrosis factor (TNF)-α treatment in psoriatic arthritis (PsA) patients. METHODS: Thirty-two consecutive PsA patients starting TNF-α inhibitors were enrolled and evaluated at baseline (T0), 2 years (FU1) and 5 years (FU2) of treatment. Arterial structural properties were evaluated by B-mode ultrasound of mean carotid intima-media thickness (mean-IMT) and maximum IMT (M-MAX) in each segment (common, bulb, internal), bilaterally. Endothelial function was assessed by post-occlusion flow-mediated dilation (FMD) of the brachial artery using high-sensitivity ultrasonography. Treatment response was studied through DAS28 (disease activity score) and inflammatory biomarkers (C-reactive protein, TNF-α, osteoprotegerin). Metrologic and metabolic data were collected. RESULTS: At T1, a significant decrease of DAS28 (4.2±0.7 vs. 2.3±0.8, p<0.001) and CRP (11.25±9.16 vs. 2.91±1.72, p<0.01) was observed. Efficacy was preserved at FU2 (DAS28 2.4±0.9, CRP 2.73±2.51; p=ns vs. FU1). Systolic blood pressure and BMI remained stable throughout the follow-up, while diastolic blood pressure decreased significantly from FU1 to FU2 (80±10 vs. 74±7 mmHg, p=0.001). From T0 to FU1 there was an increase of IMT-mean and M-MAX (0.7±0.1 vs. 0.9±0.4 and 0.9±0.2 vs. 1.1±0.4, p<0.01). At FU2, IMT-mean and M-max did not change significantly (0.9±0.3 and 1.1±0.3, p=ns vs. FU1). No significant variation in FMD values was observed during the study period. CONCLUSIONS: A slight progression of subclinical atherosclerosis in PsA was observed in the first 2 years of anti-TNF-α treatment. This process seemed to decelerate in follow-up extension to 5 years.


Assuntos
Artrite Psoriásica , Aterosclerose , Artrite Psoriásica/diagnóstico por imagem , Artrite Psoriásica/tratamento farmacológico , Aterosclerose/diagnóstico por imagem , Aterosclerose/tratamento farmacológico , Artéria Braquial/diagnóstico por imagem , Espessura Intima-Media Carotídea , Humanos , Fatores de Risco , Fator de Necrose Tumoral alfa , Ultrassonografia
6.
Lab Chip ; 20(16): 3011-3023, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32700707

RESUMO

Prior work supports the hypothesis that ATP release through connexin hemichannels drives spontaneous Ca2+ signaling in non-sensory cells of the greater epithelial ridge (GER) in the developing cochlea; however, direct proof is lacking. To address this issue, we plated cochlear organotypic cultures (COCs) and whole cell-based biosensors with nM ATP sensitivity (ATP-WCBs) at the bottom and top of an ad hoc designed transparent microfluidic chamber, respectively. By performing dual multiphoton Ca2+ imaging, we monitored the propagation of intercellular Ca2+ waves in the GER of COCs and ATP-dependent Ca2+ responses in overlying ATP-WCBs. Ca2+ signals in both COCs and ATP-WCBs were inhibited by supplementing the extracellular medium with ATP diphosphohydrolase (apyrase). Spontaneous Ca2+ signals were strongly depressed in the presence of Gjb6-/- COCs, in which connexin 30 (Cx30) is absent and connexin 26 (Cx26) is strongly downregulated. In contrast, spontaneous Ca2+ signals were not affected by replacement of Panx1-/- with Panx1+/+ COCs in the microfluidic chamber. Similar results were obtained by estimating ATP release from COCs using a classical luciferin-luciferase bioluminescence assay. Therefore, connexin hemichannels and not pannexin 1 channels mediate the release of ATP that is responsible for Ca2+ wave propagation in the developing mouse cochlea. The technological advances presented here have the potential to shed light on a plethora of unrelated open issues that involve paracrine signaling in physiology and pathology and cannot be addressed with standard methods.


Assuntos
Trifosfato de Adenosina , Conexinas , Animais , Cóclea , Conexinas/genética , Junções Comunicantes , Camundongos , Proteínas do Tecido Nervoso , Transdução de Sinais
7.
EBioMedicine ; 57: 102825, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32553574

RESUMO

BACKGROUND: Numerous currently incurable human diseases have been causally linked to mutations in connexin (Cx) genes. In several instances, pathological mutations generate abnormally active Cx hemichannels, referred to also as "leaky" hemichannels. The goal of this study was to assay the in vivo efficacy of a potent antagonist antibody targeting Cx hemichannels. METHODS: We employed the antibody to treat Cx30A88V/A88V adult mutant mice, the only available animal model of Clouston syndrome, a rare orphan disease caused by Cx30 p.A88V leaky hemichannels. To gain mechanistic insight into antibody action, we also performed patch clamp recordings, Ca2+ imaging and ATP release assay in vitro. FINDINGS: Two weeks of antibody treatment sufficed to repress cell hyperproliferation in skin and reduce hypertrophic sebaceous glands (SGs) to wild type (wt) levels. These effects were obtained whether mutant mice were treated topically, by application of an antibody cream formulation, or systemically, by intraperitoneal antibody injection. Experiments with mouse primary keratinocytes and HaCaT cells revealed the antibody blocked Ca2+ influx and diminished ATP release through leaky Cx30 p.A88V hemichannels. INTERPRETATION: Our results show anti-Cx antibody treatment was effective in vivo and sufficient to counteract the effects of pathological connexin expression in Cx30A88V/A88V mice. In vitro experiments suggest antibodies gained control over leaky hemichannels and contributed to restoring epidermal homeostasis. Therefore, regulating cell physiology by antibodies targeting the extracellular domain of Cxs may enforce an entirely new therapeutic strategy. These findings support the further development of antibodies as drugs to address unmet medical needs for Cx-related diseases. FUND: Fondazione Telethon, GGP19148; University of Padova, SID/BIRD187130; Consiglio Nazionale delle Ricerche, DSB.AD008.370.003\TERABIO-IBCN; National Science Foundation of China, 31770776; Science and Technology Commission of Shanghai Municipality, 16DZ1910200.


Assuntos
Anticorpos/farmacologia , Conexina 30/genética , Conexinas/genética , Displasia Ectodérmica/genética , Trifosfato de Adenosina/genética , Animais , Proliferação de Células/efeitos dos fármacos , Conexina 30/antagonistas & inibidores , Conexina 30/imunologia , Conexinas/antagonistas & inibidores , Conexinas/imunologia , Modelos Animais de Doenças , Displasia Ectodérmica/tratamento farmacológico , Displasia Ectodérmica/imunologia , Epiderme/efeitos dos fármacos , Epiderme/crescimento & desenvolvimento , Epiderme/metabolismo , Junções Comunicantes/genética , Junções Comunicantes/imunologia , Junções Comunicantes/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Camundongos , Mutação/genética
8.
Atherosclerosis ; 298: 27-35, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32169720

RESUMO

BACKGROUND AND AIMS: Reduced bioavailability of nitric oxide (NO) has been implicated in the pathogenesis of calcific aortic stenosis. Herein, we investigated the effects of l-Arginine, the main precursor of NO, on the osteogenic differentiation of aortic interstitial valve cells (VICs). METHODS: We isolated a clonal population of bovine VICs that expresses osteogenic markers and induces calcification of collagen matrix after stimulation with endotoxin (LPS 500 ng/mL). VICs were treated in vitro with different combinations of LPS ± l-Arginine (50 or 100 mM) and cell extracts were collected to perform proteomic (iTRAQ) and gene expression (RT-PCR) analysis. RESULTS: l-Arginine prevents the over-expression of alkaline phosphatase (ALP, p < 0.001) and reduces matrix calcification (p < 0.05) in VICs treated with LPS. l-Arginine also reduces the over-expression of inflammatory molecules induced by LPS (TNF-alpha, IL-6 and IL-1beta, p < 0.001). The proteomic analysis allowed to identify 49 proteins with an altered expression profile after stimulation with LPS and significantly modified by l-Arginine. These include proteins involved in the redox homeostasis of the cells (i.e. Xanthine Oxidase, Catalase, Aldehyde Oxidase), remodeling of the extracellular matrix (i.e. ADAMTSL4, Basigin, COL3A1) and cellular signaling (i.e. Fibrillin-1, Legumain, S100A13). The RT-PCR analysis confirmed the modifications of Fibrillin-1, ADAMTSL4, Basigin and Xanthine Oxidase, whose expression levels increase after stimulation with LPS and are reduced by l-Arginine (p < 0.05). CONCLUSIONS: l-Arginine prevents osteogenic differentiation of VICs and reduces matrix calcification. This effect is achieved through the modulation of proteins involved in the cellular redox system, remodeling of extracellular matrix and inflammatory activation of VICs.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/patologia , Arginina/metabolismo , Arginina/farmacologia , Arterite/metabolismo , Calcinose/metabolismo , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/metabolismo , Animais , Valva Aórtica/citologia , Valva Aórtica/metabolismo , Bovinos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Osteogênese/efeitos dos fármacos , Proteômica
9.
Cells ; 8(10)2019 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569545

RESUMO

In cells, photosensitizer (PS) activation by visible light irradiation triggers reactive oxygen species (ROS) formation, followed by a cascade of cellular responses involving calcium (Ca2+) and other second messengers, resulting in cell demise. Cytotoxic effects spread to nearby cells not exposed to light by poorly characterized so-called "bystander effects". To elucidate the mechanisms involved in bystander cell death, we used both genetically encoded biosensors and fluorescent dyes. In particular, we monitored the kinetics of interorganellar Ca2+ transfer and the production of mitochondrial superoxide anion (O2-∙) and hydrogen peroxide (H2O2) in irradiated and bystander B16-F10 mouse melanoma cancer cells. We determined that focal PS photoactivation in a single cell triggers Ca2+ release from the endoplasmic reticulum (ER) also in the surrounding nonexposed cells, paralleled by mitochondrial Ca2+ uptake. Efficient Ca2+ efflux from the ER was required to promote mitochondrial O2-∙ production in these bystander cells. Our results support a key role for ER-mitochondria communication in the induction of ROS-mediated apoptosis in both direct and indirect photodynamical cancer cell killing.


Assuntos
Apoptose/efeitos dos fármacos , Efeito Espectador , Peróxido de Hidrogênio/metabolismo , Indóis/farmacologia , Neoplasias/tratamento farmacológico , Compostos Organometálicos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Superóxidos/metabolismo , Animais , Técnicas Biossensoriais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Indóis/uso terapêutico , Melanoma Experimental , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Organometálicos/uso terapêutico , Estresse Oxidativo/fisiologia , Fármacos Fotossensibilizantes/uso terapêutico
10.
Cardiovasc Ther ; 36(4): e12438, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29847020

RESUMO

INTRODUCTION: Vitamin K antagonists, such as warfarin, are known to promote arterial calcification through blockade of gamma-carboxylation of Matrix-Gla-Protein. It is currently unknown whether other oral anticoagulants such as direct inhibitors of Factor Xa can have protective effects on the progression of aortic valve calcification. AIMS: To compare the effect of warfarin and rivaroxaban on the progression of aortic valve calcification in atherosclerotic mice. RESULTS: 42 ApoE-/- mice fed with Western-type Diet (WTD) were randomized to treatment with warfarin (n = 14), rivaroxaban (n = 14) or control (n = 14) for 8 weeks. Histological analyses were performed to quantify the calcification of aortic valve leaflets and the development of atherosclerosis. The analyses showed a significant increase in valve calcification in mice treated with warfarin as compared to WTD alone (P = .025) or rivaroxaban (P = .005), whereas no significant differences were found between rivaroxaban and WTD (P = .35). Quantification of atherosclerosis and intimal calcification was performed on the innominate artery of the mice and no differences were found between the 3 treatments as far as atherogenesis and calcium deposition is concerned. In vitro experiments performed using bovine interstitial valve cells (VIC) showed that treatment with rivaroxaban did not prevent the osteogenic conversion of the cells but reduce the over-expression of COX-2 induced by inflammatory mediators. CONCLUSION: We showed that warfarin, but not rivaroxaban, could induce calcific valve degeneration in a mouse model of atherosclerosis. Both the treatments did not significantly affect the progression of atherosclerosis. Overall, these data suggest a safer profile of rivaroxaban on the risk of cardiovascular disease progression.


Assuntos
Anticoagulantes/uso terapêutico , Estenose da Valva Aórtica/induzido quimicamente , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/patologia , Calcinose/induzido quimicamente , Inibidores do Fator Xa/farmacologia , Rivaroxabana/farmacologia , Varfarina/toxicidade , Animais , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Calcinose/genética , Calcinose/metabolismo , Calcinose/patologia , Bovinos , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Inibidores do Fator Xa/toxicidade , Feminino , Masculino , Camundongos Knockout para ApoE , Medição de Risco , Rivaroxabana/toxicidade , Fatores de Tempo , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA