Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 31(18): 3984-3995.e5, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34314674

RESUMO

At the initial stage of carcinogenesis, newly emerging transformed cells are often eliminated from epithelial layers via cell competition with the surrounding normal cells. For instance, when surrounded by normal cells, oncoprotein RasV12-transformed cells are extruded into the apical lumen of epithelia. During cancer development, multiple oncogenic mutations accumulate within epithelial tissues. However, it remains elusive whether and how cell competition is also involved in this process. In this study, using a mammalian cell culture model system, we have investigated what happens upon the consecutive mutations of Ras and tumor suppressor protein Scribble. When Ras mutation occurs under the Scribble-knockdown background, apical extrusion of Scribble/Ras double-mutant cells is strongly diminished. In addition, at the boundary with Scribble/Ras cells, Scribble-knockdown cells frequently undergo apoptosis and are actively engulfed by the neighboring Scribble/Ras cells. The comparable apoptosis and engulfment phenotypes are also observed in Drosophila epithelial tissues between Scribble/Ras double-mutant and Scribble single-mutant cells. Furthermore, mitochondrial membrane potential is enhanced in Scribble/Ras cells, causing the increased mitochondrial reactive oxygen species (ROS). Suppression of mitochondrial membrane potential or ROS production diminishes apoptosis and engulfment of the surrounding Scribble-knockdown cells, indicating that mitochondrial metabolism plays a key role in the competitive interaction between double- and single-mutant cells. Moreover, mTOR (mechanistic target of rapamycin kinase) acts downstream of these processes. These results imply that sequential oncogenic mutations can profoundly influence cell competition, a transition from loser to winner. Further studies would open new avenues for cell competition-based cancer treatment, thereby blocking clonal expansion of more malignant populations within tumors.


Assuntos
Competição entre as Células , Drosophila , Animais , Apoptose , Competição entre as Células/genética , Drosophila/genética , Epitélio , Mamíferos , Mutação
2.
Curr Biol ; 30(4): 670-681.e6, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32004455

RESUMO

When oncogenic transformation or apoptosis occurs within epithelia, the harmful or dead cells are apically extruded from tissues to maintain epithelial homeostasis. However, the underlying molecular mechanism still remains elusive. In this study, we first show, using mammalian cultured epithelial cells and zebrafish embryos, that prior to apical extrusion of RasV12-transformed cells, calcium wave occurs from the transformed cell and propagates across the surrounding cells. The calcium wave then triggers and facilitates the process of extrusion. IP3 receptor, gap junction, and mechanosensitive calcium channel TRPC1 are involved in calcium wave. Calcium wave induces the polarized movement of the surrounding cells toward the extruding transformed cells. Furthermore, calcium wave facilitates apical extrusion, at least partly, by inducing actin rearrangement in the surrounding cells. Moreover, comparable calcium propagation also promotes apical extrusion of apoptotic cells. Thus, calcium wave is an evolutionarily conserved, general regulatory mechanism of cell extrusion.


Assuntos
Sinalização do Cálcio/fisiologia , Transformação Celular Neoplásica/metabolismo , Animais , Cães , Embrião não Mamífero , Células Madin Darby de Rim Canino , Peixe-Zebra
3.
Nat Commun ; 9(1): 4695, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30410020

RESUMO

At the initial stage of carcinogenesis single mutated cells appear within an epithelium. Mammalian in vitro experiments show that potentially cancerous cells undergo live apical extrusion from normal monolayers. However, the mechanism underlying this process in vivo remains poorly understood. Mosaic expression of the oncogene vSrc in a simple epithelium of the early zebrafish embryo results in extrusion of transformed cells. Here we find that during extrusion components of the cytokinetic ring are recruited to adherens junctions of transformed cells, forming a misoriented pseudo-cytokinetic ring. As the ring constricts, it separates the basal from the apical part of the cell releasing both from the epithelium. This process requires cell cycle progression and occurs immediately after vSrc-transformed cell enters mitosis. To achieve extrusion, vSrc coordinates cell cycle progression, junctional integrity, cell survival and apicobasal polarity. Without vSrc, modulating these cellular processes reconstitutes vSrc-like extrusion, confirming their sufficiency for this process.


Assuntos
Epitélio/metabolismo , Mitose , Peixe-Zebra/metabolismo , Quinases da Família src/metabolismo , Junções Aderentes/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Linhagem Celular Transformada , Polaridade Celular , Sobrevivência Celular , Citocinese , Cães , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Ativação Enzimática , Células Madin Darby de Rim Canino , Fosforilação
4.
Nat Cell Biol ; 19(5): 530-541, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28414314

RESUMO

Recent studies have revealed that newly emerging transformed cells are often apically extruded from epithelial tissues. During this process, normal epithelial cells can recognize and actively eliminate transformed cells, a process called epithelial defence against cancer (EDAC). Here, we show that mitochondrial membrane potential is diminished in RasV12-transformed cells when they are surrounded by normal cells. In addition, glucose uptake is elevated, leading to higher lactate production. The mitochondrial dysfunction is driven by upregulation of pyruvate dehydrogenase kinase 4 (PDK4), which positively regulates elimination of RasV12-transformed cells. Furthermore, EDAC from the surrounding normal cells, involving filamin, drives the Warburg-effect-like metabolic alteration. Moreover, using a cell-competition mouse model, we demonstrate that PDK-mediated metabolic changes promote the elimination of RasV12-transformed cells from intestinal epithelia. These data indicate that non-cell-autonomous metabolic modulation is a crucial regulator for cell competition, shedding light on the unexplored events at the initial stage of carcinogenesis.


Assuntos
Comunicação Celular , Transformação Celular Neoplásica/metabolismo , Metabolismo Energético , Células Epiteliais/metabolismo , Animais , Linhagem Celular Transformada , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Técnicas de Cocultura , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Cães , Feminino , Genes ras , Glucose/metabolismo , Glicólise , Ácido Láctico/metabolismo , Células Madin Darby de Rim Canino , Masculino , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Interferência de RNA , Transdução de Sinais , Técnicas de Cultura de Tecidos , Transfecção
5.
Arch Toxicol ; 83(7): 647-52, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19479238

RESUMO

Previously, we reported that Wistar-Imamichi (WI) rats are highly resistant to cadmium (Cd)-induced lethality and hepatotoxicity compared to Fischer 344 (F344) rats. Since the testes are one of the most sensitive organs to acute Cd toxicity, we examined possible strain-related differences in Cd-induced testicular toxicity between inbred WI and F344 rats. Rats were treated with a single dose of 0.5, 1.0 or 2.0 mg Cd/kg, as CdCl(2), sc and killed 24 h later. Cd at doses of 1.0 and 2.0 mg/kg induced severe testicular hemorrhage, as assessed by pathological and testis hemoglobin content, in F344 rats, but not WI rats. After Cd treatment (2.0 mg/kg), the testicular Cd content was significantly lower in WI rats than in the F344 rats, indicating a toxiokinetic mechanism for the observed strain difference. Thus, the remarkable resistance to Cd-induced testicular toxicity in WI rats is associated, at least in part, with lower testicular accumulation of Cd. When zinc (Zn; 10 mg/kg, sc) was administered in combination with Cd (2.0 mg/kg) to F344 rats, the Cd-induced increase in testicular hemoglobin content, indicative of hemorrhage, was significantly reduced. Similarly, the testicular Cd content was significantly decreased with Zn co-treatment compared to Cd treatment alone. Thus, it can be concluded that the testicular Cd accumulation partly competes with Zn transport systems and that these systems may play an important role in the strain-related differences in Cd-induced testicular toxicity between WI and F344 rats.


Assuntos
Intoxicação por Cádmio/complicações , Cádmio/metabolismo , Testículo/metabolismo , Animais , Intoxicação por Cádmio/metabolismo , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Hemoglobinas/análise , Rim/metabolismo , Fígado/metabolismo , Masculino , Metalotioneína/análise , Metalotioneína/metabolismo , Ratos , Ratos Endogâmicos F344 , Ratos Wistar , Especificidade da Espécie , Espectrofotometria , Testículo/patologia , Zinco/metabolismo , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA