Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Circulation ; 147(20): 1518-1533, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37013819

RESUMO

BACKGROUND: Calcific aortic valve disease (CAVD) is characterized by a phenotypic switch of valvular interstitial cells to bone-forming cells. Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors at the interface between innate immunity and tissue repair. Type I interferons (IFNs) are not only crucial for an adequate antiviral response but also implicated in bone formation. We hypothesized that the accumulation of endogenous TLR3 ligands in the valvular leaflets may promote the generation of osteoblast-like cells through enhanced type I IFN signaling. METHODS: Human valvular interstitial cells isolated from aortic valves were challenged with mechanical strain or synthetic TLR3 agonists and analyzed for bone formation, gene expression profiles, and IFN signaling pathways. Different inhibitors were used to delineate the engaged signaling pathways. Moreover, we screened a variety of potential lipids and proteoglycans known to accumulate in CAVD lesions as potential TLR3 ligands. Ligand-receptor interactions were characterized by in silico modeling and verified through immunoprecipitation experiments. Biglycan (Bgn), Tlr3, and IFN-α/ß receptor alpha chain (Ifnar1)-deficient mice and a specific zebrafish model were used to study the implication of the biglycan (BGN)-TLR3-IFN axis in both CAVD and bone formation in vivo. Two large-scale cohorts (GERA [Genetic Epidemiology Research on Adult Health and Aging], n=55 192 with 3469 aortic stenosis cases; UK Biobank, n=257 231 with 2213 aortic stenosis cases) were examined for genetic variation at genes implicated in BGN-TLR3-IFN signaling associating with CAVD in humans. RESULTS: Here, we identify TLR3 as a central molecular regulator of calcification in valvular interstitial cells and unravel BGN as a new endogenous agonist of TLR3. Posttranslational BGN maturation by xylosyltransferase 1 (XYLT1) is required for TLR3 activation. Moreover, BGN induces the transdifferentiation of valvular interstitial cells into bone-forming osteoblasts through the TLR3-dependent induction of type I IFNs. It is intriguing that Bgn-/-, Tlr3-/-, and Ifnar1-/- mice are protected against CAVD and display impaired bone formation. Meta-analysis of 2 large-scale cohorts with >300 000 individuals reveals that genetic variation at loci relevant to the XYLT1-BGN-TLR3-interferon-α/ß receptor alpha chain (IFNAR) 1 pathway is associated with CAVD in humans. CONCLUSIONS: This study identifies the BGN-TLR3-IFNAR1 axis as an evolutionarily conserved pathway governing calcification of the aortic valve and reveals a potential therapeutic target to prevent CAVD.


Assuntos
Estenose da Valva Aórtica , Calcinose , Adulto , Animais , Humanos , Camundongos , Valva Aórtica/patologia , Estenose da Valva Aórtica/patologia , Biglicano/metabolismo , Calcinose/metabolismo , Células Cultivadas , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Peixe-Zebra
2.
Nature ; 599(7884): 315-319, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707296

RESUMO

The autosomal dominant monogenetic disease neurofibromatosis type 1 (NF1) affects approximately one in 3,000 individuals and is caused by mutations in the NF1 tumour suppressor gene, leading to dysfunction in the protein neurofibromin (Nf1)1,2. As a GTPase-activating protein, a key function of Nf1 is repression of the Ras oncogene signalling cascade. We determined the human Nf1 dimer structure at an overall resolution of 3.3 Å. The cryo-electron microscopy structure reveals domain organization and structural details of the Nf1 exon 23a splicing3 isoform 2 in a closed, self-inhibited, Zn-stabilized state and an open state. In the closed conformation, HEAT/ARM core domains shield the GTPase-activating protein-related domain (GRD) so that Ras binding is sterically inhibited. In a distinctly different, open conformation of one protomer, a large-scale movement of the GRD occurs, which is necessary to access Ras, whereas Sec14-PH reorients to allow interaction with the cellular membrane4. Zn incubation of Nf1 leads to reduced Ras-GAP activity with both protomers in the self-inhibited, closed conformation stabilized by a Zn binding site between the N-HEAT/ARM domain and the GRD-Sec14-PH linker. The transition between closed, self-inhibited states of Nf1 and open states provides guidance for targeted studies deciphering the complex molecular mechanism behind the widespread neurofibromatosis syndrome and Nf1 dysfunction in carcinogenesis.


Assuntos
Microscopia Crioeletrônica , Neurofibromina 2/química , Neurofibromina 2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Processamento Alternativo , Sítios de Ligação , Éxons , Humanos , Modelos Moleculares , Neurofibromina 1/metabolismo , Neurofibromina 2/ultraestrutura , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestrutura , Multimerização Proteica , Estabilidade Proteica , Zinco/metabolismo
3.
Nat Commun ; 11(1): 5187, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33056988

RESUMO

Mitoribosomes are specialized protein synthesis machineries in mitochondria. However, how mRNA binds to its dedicated channel, and tRNA moves as the mitoribosomal subunit rotate with respect to each other is not understood. We report models of the translating fungal mitoribosome with mRNA, tRNA and nascent polypeptide, as well as an assembly intermediate. Nicotinamide adenine dinucleotide (NAD) is found in the central protuberance of the large subunit, and the ATPase inhibitory factor 1 (IF1) in the small subunit. The models of the active mitoribosome explain how mRNA binds through a dedicated protein platform on the small subunit, tRNA is translocated with the help of the protein mL108, bridging it with L1 stalk on the large subunit, and nascent polypeptide paths through a newly shaped exit tunnel involving a series of structural rearrangements. An assembly intermediate is modeled with the maturation factor Atp25, providing insight into the biogenesis of the mitoribosomal large subunit and translation regulation.


Assuntos
Mitocôndrias/metabolismo , Ribossomos Mitocondriais/metabolismo , Neurospora crassa/fisiologia , Biossíntese de Proteínas , Fracionamento Celular , Microscopia Crioeletrônica , Proteínas Fúngicas/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/ultraestrutura , Modelos Moleculares , NAD/metabolismo , Proteínas/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo , Proteínas Ribossômicas/metabolismo , Proteína Inibidora de ATPase
4.
Nat Commun ; 11(1): 1487, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198407

RESUMO

Rewiring of energy metabolism and adaptation of mitochondria are considered to impact on prostate cancer development and progression. Here, we report on mitochondrial respiration, DNA mutations and gene expression in paired benign/malignant human prostate tissue samples. Results reveal reduced respiratory capacities with NADH-pathway substrates glutamate and malate in malignant tissue and a significant metabolic shift towards higher succinate oxidation, particularly in high-grade tumors. The load of potentially deleterious mitochondrial-DNA mutations is higher in tumors and associated with unfavorable risk factors. High levels of potentially deleterious mutations in mitochondrial Complex I-encoding genes are associated with a 70% reduction in NADH-pathway capacity and compensation by increased succinate-pathway capacity. Structural analyses of these mutations reveal amino acid alterations leading to potentially deleterious effects on Complex I, supporting a causal relationship. A metagene signature extracted from the transcriptome of tumor samples exhibiting a severe mitochondrial phenotype enables identification of tumors with shorter survival times.


Assuntos
DNA Mitocondrial/genética , Mutação , Fosforilação Oxidativa , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Ácido Succínico/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Malatos , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Próstata/patologia , Neoplasias da Próstata/patologia , Transcriptoma
5.
Chembiochem ; 20(22): 2824-2829, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31150155

RESUMO

Psilocybin and its direct precursor baeocystin are indole alkaloids of psychotropic Psilocybe mushrooms. The pharmaceutical interest in psilocybin as a treatment option against depression and anxiety is currently being investigated in advanced clinical trials. Here, we report a biocatalytic route to synthesize 6-methylated psilocybin and baeocystin from 4-hydroxy-6-methyl-l-tryptophan, which was decarboxylated and phosphorylated by the Psilocybe cubensis biosynthesis enzymes PsiD and PsiK. N-Methylation was catalyzed by PsiM. We further present an in silico structural model of PsiM that revealed a well-conserved SAM-binding core along with peripheral nonconserved elements that likely govern substrate preferences.


Assuntos
Alcaloides/síntese química , Indóis/síntese química , Metiltransferases/química , Organofosfatos/síntese química , Psilocibina/análogos & derivados , Psilocibina/síntese química , Proteínas de Bactérias/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Metilação , Metiltransferases/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Psilocybe/enzimologia , S-Adenosilmetionina/metabolismo , Salmonella enterica/enzimologia , Triptofano Sintase/química
6.
Acta Crystallogr D Struct Biol ; 72(Pt 12): 1267-1280, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27917827

RESUMO

The monoclonal antibody N14 is used as a detection antibody in ELISA kits for the human glycoprotein afamin, a member of the albumin family, which has recently gained interest in the capture and stabilization of Wnt signalling proteins, and for its role in metabolic syndrome and papillary thyroid carcinoma. As a rare occurrence, the N14 Fab is N-glycosylated at Asn26L at the onset of the VL1 antigen-binding loop, with the α-1-6 core fucosylated complex glycan facing out of the L1 complementarity-determining region. The crystal structures of two non-apparent (pseudo) isomorphous crystals of the N14 Fab were analyzed, which differ significantly in the elbow angles, thereby cautioning against the overinterpretation of domain movements upon antigen binding. In addition, the map quality at 1.9 Šresolution was sufficient to crystallographically re-sequence the variable VL and VH domains and to detect discrepancies in the hybridoma-derived sequence. Finally, a conservatively refined parsimonious model is presented and its statistics are compared with those from a less conservatively built model that has been modelled more enthusiastically. Improvements to the PDB validation reports affecting ligands, clashscore and buried surface calculations are suggested.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Proteínas de Transporte/imunologia , Glicoproteínas/imunologia , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Albumina Sérica/imunologia , Animais , Complexo Antígeno-Anticorpo , Regiões Determinantes de Complementaridade , Cristalografia por Raios X , Glicosilação , Humanos , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/imunologia , Camundongos , Modelos Moleculares , Albumina Sérica Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA