Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36673344

RESUMO

Probiotics are associated with health benefits to the host. However, their application can be limited due to a decrease in cell viability during processing, storage, and passage through the gastrointestinal tract. Microencapsulation is a simple and efficient alternative to improve the physical protection and stability of probiotics. The present study aimed to produce and characterize alginate or gelatin-based microparticles containing Lactobacillus acidophilus NRRL B-4495 or Lactiplantibacillus plantarum NRRL B-4496 by oil-in-water (O/W) emulsification and to evaluate the stability under storage conditions. The results showed that L. acidophilus and L. plantarum encapsulated in gelatin (LAEG and LPEG) presented diameters of 26.08 ± 1.74 µm and 21.56 ± 4.17 µm and encapsulation efficiencies of 89.6 ± 4.2% and 81.1 ± 9.7%, respectively. However, those encapsulated in alginate (LAEA and LPEA) showed an encapsulation efficiency of <1.0%. Furthermore, LAEG was stable for 120 days of storage at 5 °C and 25 °C. Therefore, encapsulation in gelatin by O/W emulsification is a promising strategy for protecting and stabilizing probiotic bacteria, enabling future application in foods.

2.
PLoS One ; 17(3): e0265649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35303021

RESUMO

The present study evaluated the cytotoxicity, antioxidant potential, and antimicrobial effect on the antibiotic activity modulation of gelatin nanoparticles containing buriti oil (OPG). The cytotoxicity analysis was performed on Chinese Hamster Ovary Cells (CHO) using a MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] test. The antioxidant potential of buriti oil and OPG was determined by total antioxidant capacity, reducing power, and the ABTS (2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) test. The modulating antimicrobial activity was evaluated by determining the minimum inhibitory concentration (MIC) concentration against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, gentamicin and norflaxacillin. The nanoformulation of OPG did not show a cytotoxic effect on CHO cells and had a higher antioxidant potential than free buriti oil (p<0.05). The combination of antibiotics with free buriti oil and OPG was more efficient in inhibiting E. coli and P. aeruginosa than isolated norfloxacillin and gentamicin (p<0.05). Regarding the inhibition of S. aureus, OPG in combination with norfloxacillin reduced MIC by 50%. Nanoencapsulation was a viable alternative to enhance functionality and adding commercial value to buriti oil.


Assuntos
Antioxidantes , Arecaceae , Animais , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Células CHO , Carotenoides , Cricetinae , Cricetulus , Escherichia coli , Gelatina , Gentamicinas/farmacologia , Testes de Sensibilidade Microbiana , Óleos de Plantas , Staphylococcus aureus , Suínos
3.
Food Chem ; 348: 129055, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33508595

RESUMO

The study evaluated the potential and antioxidant stability of nanoencapsulated carotenoid-rich extract (CE) from Cantaloupe melon (EPG). DPPH and ABTS radical scavenging assays were used to investigate the nanoencapsulation effect on antioxidant potential. CE and EPG stability were evaluated at 25 °C and 5 °C, with and without light (1600 lx) for 60 days, determining the ß-carotene concentration by UHPLC and antioxidant potential by ABTS. The antioxidant potential of carotenoids increased after nanoencapsulation (57-59%). After 60 days, there was low retention of ß-carotene (0-43.6%) in the CE, mainly at 25 °C light (0.00%) and dark (10.0%), and total loss of activity in the four conditions. EPG preserved the ß-carotene concentration in the dark at 25 °C (99.0%) and in the light (83.1%) and dark (99.0%) at 5 °C, maintaining the antioxidant potential (68.7-48.3%). Therefore, EPG enhanced and stabilized the antioxidant potential of carotenoids, beneficial to human health.


Assuntos
Antioxidantes/química , Antioxidantes/isolamento & purificação , Carotenoides/análise , Cucumis melo/química , Armazenamento de Alimentos , Gelatina/química , Nanoestruturas/química , Cápsulas , Frutas/química , Humanos
4.
BMC Biotechnol ; 20(1): 55, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33066751

RESUMO

BACKGROUND: Buriti oil presents numerous health benefits, but due to its lipophilic nature and high oxidation, it is impossible to incorporate it into aqueous food matrices. Thus, the present study evaluated whether powder nanoparticles based on porcine gelatin (OPG) and in combination with sodium alginate (OAG) containing buriti oil obtained by O/W emulsification followed by freeze-drying enabled water dispersibility and preserved or increased the antimicrobial activity of the oil. RESULTS: OPG presented spherical shape, smooth surface, smaller particle size and polydispersity index [51.0 (6.07) nm and 0.40 (0.05)], and better chemical interaction between the nonpolar amino acids and the hydrophobic oil chain. OPG also presented a higher dispersibility percentage [85.62% (7.82)] than OAG [50.19% (7.24)] (p < 0.05), and significantly increased the antimicrobial activity of the oil by 59, 62, and 43% for Pseudomonas aeruginosa, Klebsiella pneumonia, and Staphylococcus aureus, respectively. CONCLUSIONS: Thus, nanoencapsulation in gelatin is a promising strategy to increase the potential to use buriti oil in foods.


Assuntos
Anti-Infecciosos/farmacologia , Arecaceae/química , Gelatina/química , Gelatina/farmacologia , Nanopartículas/química , Água/química , Aminoácidos , Animais , Anti-Infecciosos/química , Carotenoides , Ácidos Graxos , Interações Hidrofóbicas e Hidrofílicas , Hidroxibenzoatos/análise , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Extratos Vegetais/farmacologia , Óleos de Plantas , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA