Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 346: 122596, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245487

RESUMO

Drug treatment of glioblastoma, the most aggressive and widespread form of brain cancer, is complicated due to the difficulty of penetration of chemotherapeutic drugs through the blood-brain barrier (BBB). Moreover, with surgical removal of tumors, in 90 % of cases they reappear near the original focus. To solve this problem, we propose to use hydrogel based on cellulose nanocrystals grafted with poly(N-isopropylacrylamide) (CNC-g-PNIPAM) as a promising material for filling postoperative cavities in the brain with the release of antitumor drugs. The CNC-g-PNIPAM is formed by "grafting to" method for precise control of molecular weight and grafting density. This colloidal system is liquid under injection conditions (at r. t.) and turns into a gel at human body temperature (when filling the postoperative area). It was shown for the first time that due to the rod-shaped of CNC, the gel has a fibrillar structure and, thus, mechanical properties similar to those of brain tissue, including nonlinear mechanics (strain-stiffening and compression softening). The biocompatibility of the hydrogel with primary brain cells is demonstrated. In addition, the release of the antitumor drug paclitaxel from the hydrogel and its antitumor activity is shown. The resulting nanocolloid system provides an innovative alternative approach to filling postoperative cavities and can be used for postoperative treatment due to the programmable release of drugs, as well as for in vitro modeling of tumor interaction with the BBB affecting drug transport in the brain.


Assuntos
Resinas Acrílicas , Materiais Biocompatíveis , Celulose , Hidrogéis , Nanopartículas , Celulose/química , Nanopartículas/química , Resinas Acrílicas/química , Humanos , Animais , Materiais Biocompatíveis/química , Hidrogéis/química , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Paclitaxel/química , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Temperatura , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Liberação Controlada de Fármacos , Barreira Hematoencefálica/metabolismo
2.
Biomedicines ; 11(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37626725

RESUMO

Tuberculosis remains one of the major health problems worldwide. Besides the lungs, tuberculosis affects other organs, including bones and joints. In the case of bone tuberculosis, current treatment protocols include necrectomy in combination with conventional anti-tuberculosis therapy, followed by reconstruction of the resulting bone defects. In this study, we compared autografting and implantation with a biodegradable composite scaffold for bone-defect regeneration in a tuberculosis rabbit model. Porous three-dimensional composite materials were prepared by 3D printing and consisted of poly(ε-caprolactone) filled with nanocrystalline cellulose modified with poly(glutamic acid). In addition, rabbit mesenchymal stem cells were adhered to the surface of the composite scaffolds. The developed tuberculosis model was verified by immunological subcutaneous test, real-time polymerase chain reaction, biochemical markers and histomorphological study. Infected animals were randomly divided into three groups, representing the infection control and two experimental groups subjected to necrectomy, anti-tuberculosis treatment, and plastic surgery using autografts or 3D-composite scaffolds. The lifetime observation of the experimental animals and analysis of various biochemical markers at different time periods allowed the comparison of the state of the animals between the groups. Micro-computed tomography and histomorphological analysis enabled the evaluation of osteogenesis, inflammation and cellular changes between the groups, respectively.

3.
J Biomed Mater Res B Appl Biomater ; 108(3): 1010-1021, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31369698

RESUMO

Reconstructive surgery for urethral defects employing tissue-engineered scaffolds represents an alternative treatment for urethroplasty. The aim of this study was to compare the therapeutic efficacy of the bilayer poly-D,L-lactide/poly-ε-caprolactone (PL-PC) scaffold seeded with allogenic mesenchymal stem cells (MSCs) for urethra reconstruction in a rabbit model with conventional urethroplasty employing an autologous buccal mucosa graft (BG). The inner layer of the scaffold based on poly-D,L-lactic acid (PL) was seeded with MSCs, while the outer layer, prepared from poly-ε-caprolactone, protected the surrounding tissues from urine. To track the MSCs in vivo, the latter were labeled with superparamagnetic iron oxide nanoparticles. In rabbits, a dorsal penile defect was reconstructed employing a BG or a PL-PC graft seeded with nanoparticle-labeled MSCs. In the 12-week follow-up period, no complications were detected. Subsequent histological analysis demonstrated biointegration of the PL-PC graft with surrounding urethral tissues. Less fibrosis and inflammatory cell infiltration were observed in the experimental group as compared with the BG group. Nanoparticle-labeled MSCs were detected in the urothelium and muscular layer, co-localizing with the urothelium cytokeratin marker AE1/AE3, indicating the possibility of MSC differentiation into neo-urothelium. Our results suggest that a bilayer MSCs-seeded scaffold could be efficiently employed for urethroplasty.


Assuntos
Células-Tronco Mesenquimais/citologia , Poliésteres/química , Engenharia Tecidual/instrumentação , Uretra/cirurgia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Chinchila , Condrócitos/citologia , Compostos Férricos/química , Inflamação , Bicamadas Lipídicas , Masculino , Nanopartículas Metálicas/química , Mucosa Bucal/patologia , Nanopartículas/química , Coelhos , Alicerces Teciduais/química , Transplante Homólogo , Urotélio/metabolismo
4.
Int J Nanomedicine ; 11: 4521-4533, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27660444

RESUMO

In the present study, a poly-l-lactide/silk fibroin (PL-SF) bilayer scaffold seeded with allogenic bone marrow stromal cells (BMSCs) was investigated as a potential approach for bladder tissue engineering in a model of partial bladder wall cystectomy in rabbits. The inner porous layer of the scaffold produced from silk fibroin was designed to promote cell proliferation and the outer layer produced from poly-l-lactic acid to serve as a waterproof barrier. To compare the feasibility and efficacy of BMSC application in the reconstruction of bladder defects, 12 adult male rabbits were divided into experimental and control groups (six animals each) that received a scaffold seeded with BMSCs or an acellular one, respectively. For BMSC tracking in the graft in in vivo studies using magnetic resonance imaging, cells were labeled with superparamagnetic iron oxide nanoparticles. In vitro studies demonstrated high intracellular incorporation of nanoparticles and the absence of a toxic influence on BMSC viability and proliferation. Following implantation of the graft with BMSCs into the bladder, we observed integration of the scaffold with surrounding bladder tissues (as detected by magnetic resonance imaging). During the follow-up period of 12 weeks, labeled BMSCs resided in the implanted scaffold. The functional activity of the reconstructed bladder was confirmed by electromyography. Subsequent histological assay demonstrated enhanced biointegrative properties of the PL-SF scaffold with cells in comparison to the control graft, as related to complete regeneration of the smooth muscle and urothelium tissues in the implant. Confocal microscopy studies confirmed the presence of the superparamagnetic iron oxide nanoparticle-labeled BMSCs in newly formed bladder layers, thus indicating the role of stem cells in bladder regeneration. The results of this study demonstrate that application of a PL-SF scaffold seeded with allogenic BMSCs can enhance biointegration of the graft in vivo and support bladder tissue regeneration and function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA