Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cells ; 11(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36497197

RESUMO

Lonp1 is a mitochondrial protease that degrades oxidized and damaged proteins, assists protein folding, and contributes to the maintenance of mitochondrial DNA. A higher expression of LonP1 has been associated with higher tumour aggressiveness. Besides the full-length isoform (ISO1), we identified two other isoforms of Lonp1 in humans, resulting from alternative splicing: Isoform-2 (ISO2) lacking aa 42-105 and isoform-3 (ISO3) lacking aa 1-196. An inspection of the public database TSVdb showed that ISO1 was upregulated in lung, bladder, prostate, and breast cancer, ISO2 in all the cancers analysed (including rectum, colon, cervical, bladder, prostate, breast, head, and neck), ISO3 did not show significant changes between cancer and normal tissue. We overexpressed ISO1, ISO2, and ISO3 in SW620 cells and found that the ISO1 isoform was exclusively mitochondrial, ISO2 was present in the organelle and in the cytoplasm, and ISO3 was exclusively cytoplasmatic. The overexpression of ISO1 and, at a letter extent, of ISO2 enhanced basal, ATP-linked, and maximal respiration without altering the mitochondria number or network, mtDNA amount. or mitochondrial dynamics. A higher extracellular acidification rate was observed in ISO1 and ISO2, overexpressing cells, suggesting an increase in glycolysis. Cells overexpressing the different isoforms did not show a difference in the proliferation rate but showed a great increase in anchorage-independent growth. ISO1 and ISO2, but not ISO3, determined an upregulation of EMT-related proteins, which appeared unrelated to higher mitochondrial ROS production, nor due to the activation of the MEK ERK pathway, but rather to global metabolic reprogramming of cells.


Assuntos
Proteases Dependentes de ATP , Proteínas Mitocondriais , Neoplasias , Humanos , Processamento Alternativo , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Glicólise , Homeostase , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Isoformas de Proteínas/metabolismo
2.
Sci Rep ; 12(1): 10877, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760833

RESUMO

The coordinated communication between the mitochondria and nucleus is essential for cellular activities. Nonetheless, the pathways involved in this crosstalk are scarcely understood. The protease Lonp1 was previously believed to be exclusively located in the mitochondria, with an important role in mitochondrial morphology, mtDNA maintenance, and cellular metabolism, in both normal and neoplastic cells. However, we recently detected Lonp1 in the nuclear, where as much as 22% of all cellular Lonp1 can be found. Nuclear localization is detectable under all conditions, but the amount is dependent on a response to heat shock (HS). Lonp1 in the nucleus interacts with heat shock factor 1 (HSF1) and modulates the HS response. These findings reveal a novel extramitochondrial function for Lonp1 in response to stress.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Proteases Dependentes de ATP/genética , Núcleo Celular/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo
3.
Transl Oncol ; 15(1): 101240, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34649148

RESUMO

BACKGROUND: Ewing's sarcoma (ES) is an aggressive cancer affecting children and young adults. We pre-clinically demonstrated that mesenchymal stromal/stem cells (MSCs) can deliver tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) against primary ES after local injection. However, ES is often metastatic calling for approaches able to support MSC targeting to the ES multiple remote sites. Considering that the disialoganglioside GD2 is expressed by ES and to optimise MSC tumour affinity, bi-functional (BF) MSCs expressing both TRAIL and a truncated anti-GD2 chimeric antigen receptor (GD2 tCAR) were generated and challenged against ES. METHODS: The anti-GD2 BF MSCs delivering a soluble variant of TRAIL (sTRAIL) were tested in several in vitro ES models. Tumour targeting and killing by BF MSCs was further investigated by a novel immunodeficient ES metastatic model characterized by different metastatic sites, including lungs, liver and bone, mimicking the deadly clinical scenario. FINDINGS: In vitro data revealed both tumour affinity and killing of BF MSCs. In vivo, GD2 tCAR molecule ameliorated the tumour targeting and persistence of BF MSCs counteracting ES in lungs but not in liver. INTERPRETATION: We here generated data on the potential effects of BF MSCs within a complex ES metastatic in vivo model, exploring also the biodistribution of MSCs. Our BF MSC-based strategy promises to pave the way for potential improvements in the therapeutic delivery of TRAIL for the treatment of metastatic ES and other deadly GD2-positive malignancies.

4.
J Clin Med ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36614882

RESUMO

Physical activity and diet are essential for maintaining good health and preventing the development of non-communicable diseases, especially in the older adults. One aspect that is often over-looked is the different response between men and women to exercise and nutrients. The body's response to exercise and to different nutrients as well as the choice of foods is different in the two sexes and is strongly influenced by the different hormonal ages in women. The present narrative review analyzes the effects of gender on nutrition and physical activity in older women. Understanding which components of diet and physical activity affect the health status of older women would help target non-pharmacological but lifestyle-related therapeutic interventions. It is interesting to note that this analysis shows a lack of studies dedicated to older women and a lack of studies dedicated to the interactions between diet and physical activity in women. Gender medicine is a current need that still finds little evidence.

5.
J Infect Dis ; 223(3): 482-493, 2021 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32620016

RESUMO

BACKGROUND: In patients undergoing orthotopic liver transplant (OLT), immunosuppressive treatment is mandatory and infections are leading causes of morbidity/mortality. Thus, it is essential to understand the functionality of cell-mediated immunity after OLT. The aim of the study was to identify changes in T-cell phenotype and polyfunctionality in human immunodeficiency virus-positive (HIV+) and -negative (HIV-) patients undergoing immunosuppressive treatment after OLT. METHODS: We studied peripheral blood mononuclear cells from 108 subjects divided into 4 groups of 27: HIV+ transplanted patients, HIV- transplanted patients, HIV+ nontransplanted patients, and healthy subjects. T-cell activation, differentiation, and cytokine production were analyzed by flow cytometry. RESULTS: Median age was 55 years (interquartile range, 52-59 years); the median CD4 count in HIV+ patients was 567 cells/mL, and all had undetectable viral load. CD4+ and CD8+ T-cell subpopulations showed different distributions between HIV+ and HIV- OLT patients. A cluster representing effector cells expressing PD1 was abundant in HIV- transplanted patients and they were characterized by higher levels of CD4+ T cells able to produce interferon-γ and tumor necrosis factor-α. CONCLUSIONS: HIV- transplanted patients have more exhausted or inflammatory T cells compared to HIV+ transplanted patients, suggesting that patients who have already experienced a form of immunosuppression due to HIV infection respond differently to anti-rejection therapy.


Assuntos
Infecções por HIV/imunologia , Terapia de Imunossupressão , Transplante de Fígado , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Estudos de Casos e Controles , Estudos Transversais , Citocinas/metabolismo , Feminino , HIV-1/imunologia , Humanos , Imunossupressores , Interferon gama , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Carga Viral
6.
Mol Cell Neurosci ; 108: 103538, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828963

RESUMO

Microglia are the resident innate immune cells of the central nervous system and exert functions of host defense and maintenance of normal tissue homeostasis, along with support of neuronal processes in the healthy brain. Chronic and dysregulated microglial cell activation has increasingly been linked to the status of neuroinflammation underlying many neurodegenerative diseases, including multiple sclerosis (MS). However, the stimulus (or stimuli) and mechanisms by which microglial activation is initiated and maintained MS are still debated. The purpose of our research was to investigate whether the endogenous mitochondrial (mt)-derived damage-associated molecular patterns (MTDs) mtDNA, N-formyl peptides and cardiolipin (CL) contribute to these phenomena. We characterized the effects of the abovementioned MTDs on microglia activation in vitro (i.e. using HMC3 cells) by evaluating the expression of gene coding for proteins involved in their binding and coupled to downstream signaling pathways, the up-regulation of markers of activation on the cell surface and the production of pro-inflammatory cytokines and reactive oxygen species. At the transcriptional level, significant variations in the mRNA relative expression of five of eleven selected genes were observed in response to stimulation. No changes in activation of antigenic profile or functional properties of HMC3 cells were observed; there was no up-regulation of HLA-DR expression or increased secretion of tumor necrosis factor-α and interleukin-6. However, after stimulation with mtDNA and CL, an increase in cellular oxidative stress, but not in the mt ROS O2-, compared to control cells, were observed. There were no effects on cell viability. Overall, our data suggest that MTDs could cause a failure in microglial activation toward a pro-inflammatory phenotype, possibly triggering an endogenous regulatory mechanism for the resolution of neuroinflammation. This could open a door for the development of drugs selectively targeting microglia and modulating its functionality to treat MS and/or other neurodegenerative conditions in which MTDs have a pathogenic relevance.


Assuntos
Microglia/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cardiolipinas/metabolismo , Linhagem Celular , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Microglia/efeitos dos fármacos , Estresse Oxidativo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
J Neuroimmunol ; 338: 577107, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31726376

RESUMO

The role of damage-associated molecular patterns in multiple sclerosis (MS) is under investigation. Here, we studied the contribution of circulating high mobility group box protein 1 (HMGB1) and mitochondrial DNA (mtDNA) to neuroinflammation in progressive MS. We measured plasmatic mtDNA, HMGB1 and pro-inflammatory cytokines in 38 secondary progressive (SP) patients, 35 primary progressive (PP) patients and 42 controls. Free mtDNA was higher in SP than PP. Pro-inflammatory cytokines were increased in progressive patients. In PP, tumor necrosis factor-α correlated with MS Severity Score. Thus, in progressive patients, plasmatic mtDNA and pro-inflammatory cytokines likely contribute to the systemic inflammatory status.


Assuntos
Citocinas/sangue , DNA Mitocondrial/sangue , Esclerose Múltipla/etiologia , Adolescente , Adulto , Idoso , Feminino , Proteína HMGB1/sangue , Humanos , Interleucina-8/sangue , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Fator de Necrose Tumoral alfa/sangue , Adulto Jovem
9.
Molecules ; 24(22)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766211

RESUMO

Triterpenoids are natural compounds synthesized by plants through cyclization of squalene, known for their weak anti-inflammatory activity. 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO), and its C28 modified derivative, methyl-ester (CDDO-Me, also known as bardoxolone methyl), are two synthetic derivatives of oleanolic acid, synthesized more than 20 years ago, in an attempt to enhance the anti-inflammatory behavior of the natural compound. These molecules have been extensively investigated for their strong ability to exert antiproliferative, antiangiogenic, and antimetastatic activities, and to induce apoptosis and differentiation in cancer cells. Here, we discuss the chemical properties of natural triterpenoids, the pathways of synthesis and the biological effects of CDDO and its derivative CDDO-Me. At nanomolar doses, CDDO and CDDO-Me have been shown to protect cells and tissues from oxidative stress by increasing the transcriptional activity of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2). At doses higher than 100 nM, CDDO and CDDO-Me are able to modulate the differentiation of a variety of cell types, both tumor cell lines or primary culture cell, while at micromolar doses these compounds exert an anticancer effect in multiple manners; by inducing extrinsic or intrinsic apoptotic pathways, or autophagic cell death, by inhibiting telomerase activity, by disrupting mitochondrial functions through Lon protease inhibition, and by blocking the deubiquitylating enzyme USP7. CDDO-Me demonstrated its efficacy as anticancer drugs in different mouse models, and versus several types of cancer. Several clinical trials have been started in humans for evaluating CDDO-Me efficacy as anticancer and anti-inflammatory drug; despite promising results, significant increase in heart failure events represented an obstacle for the clinical use of CDDO-Me.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/síntese química , Ácido Oleanólico/farmacologia , Triterpenos/química , Antineoplásicos/química , Redes e Vias Metabólicas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Ácido Oleanólico/química
10.
Front Oncol ; 8: 254, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038898

RESUMO

Mitochondrial Lon protease (LonP1) is a multi-function enzyme that regulates mitochondrial functions in several human malignancies, including colorectal cancer (CRC). The mechanism(s) by which LonP1 contributes to colorectal carcinogenesis is not fully understood. We found that silencing LonP1 leads to severe mitochondrial impairment and apoptosis in colon cancer cells. Here, we investigate the role of LonP1 in mitochondrial functions, metabolism, and epithelial-mesenchymal transition (EMT) in colon tumor cells and in metastasis. LonP1 was almost absent in normal mucosa, gradually increased from aberrant crypt foci to adenoma, and was most abundant in CRC. Moreover, LonP1 was preferentially upregulated in colorectal samples with mutated p53 or nuclear ß-catenin, and its overexpression led to increased levels of ß-catenin and decreased levels of E-cadherin, key proteins in EMT, in vitro. LonP1 upregulation also induced opposite changes in oxidative phosphorylation, glycolysis, and pentose pathway in SW480 primary colon tumor cells when compared to SW620 metastatic colon cancer cells. In conclusion, basal LonP1 expression is essential for normal mitochondrial function, and increased LonP1 levels in SW480 and SW620 cells induce a metabolic shift toward glycolysis, leading to EMT.

11.
Methods ; 134-135: 3-10, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29133210

RESUMO

Circulating endothelial cells (CECs) detach from the intima monolayer after endothelial damages. Their circulating endothelial progenitors (CEPs) represent less than 0.01% of nucleated blood cells. Increased levels of CECs and CEPs have been detected in patients with several types of cancer, suggesting that they could be a useful blood-based marker for detecting a tumor, or for monitoring its clinical course. However, their routine monitoring is time consuming and technically challenging. Here, we present a flow cytometry method for quantifying such cells in a cohort of patients with hemangioblastoma (HB). HB is a rare benign tumor, responsible for 1-2.5% of primary intracranial tumors and up to 10% of spinal cord tumors, and for which no tools are available to predict the onset or recurrence in patients undergoing surgical removal of tumor mass. This method allowed us to accurately quantifying CEC and CEP before and after surgery. CEPs are present at high levels in HB patients than control before intervention, and decrease after tumor removal, suggesting that their percentage could represent a valid tool to monitor the disease onset and recurrence.


Assuntos
Biomarcadores Tumorais/sangue , Citometria de Fluxo , Hemangioblastoma/sangue , Células Neoplásicas Circulantes/patologia , Adolescente , Adulto , Idoso , Criança , Células Endoteliais/patologia , Feminino , Hemangioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
AIDS ; 31 Suppl 2: S105-S119, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28471941

RESUMO

: The increased prevalence of age-related comorbidities and mortality is worrisome in ageing HIV-infected patients. Here, we aim to analyse the different ageing mechanisms with regard to HIV infection. Ageing results from the time-dependent accumulation of random cellular damage. Epigenetic modifications and mitochondrial DNA haplogroups modulate ageing. In antiretroviral treatment-controlled patients, epigenetic clock appears to be advanced, and some haplogroups are associated with HIV infection severity. Telomere shortening is enhanced in HIV-infected patients because of HIV and some nucleoside analogue reverse transcriptase inhibitors. Mitochondria-related oxidative stress and mitochondrial DNA mutations are increased during ageing and also by some nucleoside analogue reverse transcriptase inhibitors. Overall, increased inflammation or 'inflammageing' is a major driver of ageing and could result from cell senescence with secreted proinflammatory mediators, altered gut microbiota, and coinfections. In HIV-infected patients, the level of inflammation and innate immunity activation is enhanced and related to most comorbidities and to mortality. This status could result, in addition to age, from the virus itself or viral protein released from reservoirs, from HIV-enhanced gut permeability and dysbiosis, from antiretroviral treatment, from frequent cytomegalovirus and hepatitis C virus coinfections, and also from personal and environmental factors, as central fat accumulation or smoking. Adaptive immune activation and immunosenescence are associated with comorbidities and mortality in the general population but are less predictive in HIV-infected patients. Biomarkers to evaluate ageing in HIV-infected patients are required. Numerous systemic or cellular inflammatory, immune activation, oxidative stress, or senescence markers can be tested in serum or peripheral blood mononuclear cells. The novel European Study to Establish Biomarkers of Human Ageing MARK-AGE algorithm, evaluating the biological age, is currently assessed in HIV-infected patients and reveals an advanced biological age. Some enhanced inflammatory or innate immune activation markers are interesting but still not validated for the patient's follow-up. To be able to assess patients' biological age is an important objective to improve their healthspan.


Assuntos
Envelhecimento/patologia , Biomarcadores/análise , Infecções por HIV/patologia , Pesquisa Biomédica/tendências , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Inflamação/fisiopatologia
13.
Dev Comp Immunol ; 72: 37-43, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28163091

RESUMO

The golden apple snail Pomacea canaliculata is an invasive pest originating from South America. It has already been found in Asia, the southern United States and more recently in the EU. Aiming to target the immune system of the snail as a way to control its spreading, we have developed organ-specific transcriptomes and looked for molecules controlling replication and differentiation of snail hemocytes. The prokineticin domain-containing protein Astakine 1 is the only cytokine known thus far capable of regulating invertebrate hematopoiesis, and we analyzed the transcriptomes looking for molecules containing a prokineticin domain. We have identified a prokineticin-like protein (PlP), that we called Pc-plp and we analyzed by real-time PCR (qPCR) its expression. In control snails, highest levels of Pc-plp were detected in the digestive gland, the ampulla (i.e., a hemocyte reservoir) and the pericardial fluid (i.e., the hematopoietic district). We tested Pc-plp expression after triggering hematopoiesis via multiple hemolymph withdrawals, or during bacterial challenge through LPS injection. In both cases a reduction of Pc-plp mRNA was observed. The multiple hemolymph withdrawals caused a significant decrease of Pc-plp mRNA in pericardial fluid and circulating hemocytes, while the LPS injection promoted the Pc-plp mRNA drop in anterior kidney, mantle and gills, organs that may act as immune barrier in molluscs. Our data indicate an important role for prokineticin domain-containing proteins as immunomodulators also in gastropods and their dynamic expression may serve as a biosensor to gauge the effectiveness of immunological interventions aimed at curtailing the spreading of the gastropod pest P. canaliculata.


Assuntos
Citocinas/metabolismo , Gastrópodes/imunologia , Hemócitos/imunologia , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina/metabolismo , Animais , Citocinas/genética , Regulação para Baixo , Hematopoese , Hemolinfa , Imunidade Inata , Imunomodulação , Lipopolissacarídeos/imunologia , Transcriptoma , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina/genética
14.
Front Immunol ; 7: 555, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965675

RESUMO

BACKGROUND: Multiple sclerosis (MS), an autoimmune disease with neurodegeneration and inflammation is characterized by several alterations of different T cell subsets. However, few data exist on the role of iNKT lymphocytes. OBJECTIVE: To identify possible changes in the phenotype of iNKT cells in patients with different clinical forms of MS and find alterations in their polyfunctionality [i.e., ability to produce simultaneously up to four cytokines such as IL-17, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and IL-4]. METHODS: We studied a total of 165 patients, 91 with a relapsing-remitting form [RR; 31 were treated with interferon (IFN)1a-ß, 25 with natalizumab (NAT), 29 with glatiramer acetate; 17 were newly diagnosed RR without treatment, 19 not-active RR without treatment]. Forty-four patients had a progressive MS: 20 primary progressive (PP) and 24 secondary progressive (SP). A total of 55 age- and sex-matched subjects represented healthy controls (CTR). Among fresh peripheral blood mononuclear cells, iNKT cells were identified by flow cytometry. Moreover, the capability of iNKT cells to produce different cytokines (IL-17, TNF-α, IFN-γ, and IL-4) after in vitro stimulation were evaluated in 18 RR (11 treated with NAT and 7 with IFN), 4 PP, 6 SP, and 16 CTR. RESULTS: No main differences were found in iNKT cell phenotype among MS patients with different MS forms or during different treatments. However, the polyfunctional response of iNKT cells showed Th1 and Th17 profiles. This was well evident in patients with SP form, who are characterized by high levels of inflammation and neurodegeneration, and exhibited a sustained increase in the production of Th17 cytokines. Patients treated with NAT displayed lower levels of iNKT cells producing IL-17, TNF-α, and IFN-γ. CONCLUSION: Our data suggest that the progressive phase of the disease is characterized by permanent iNKT activation and a skewing towards an inflammatory phenotype. Compared to other treatments, NAT was able to modulate iNKT cell function.

15.
PLoS One ; 11(12): e0167757, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936119

RESUMO

TNF-α has a central role in the development and maintenance of psoriatic plaques, and its serum levels correlate with disease activity. Anti-TNF-α drugs are, however, ineffective in a relevant percentage of patients for reasons that are currently unknown. To understand whether the response to anti-TNF-α drugs is influenced by the production of anti-drug antibodies or by the modulation of the TNFα-TNFα receptor system, and to identify changes in monocyte phenotype and activity, we analysed 119 psoriatic patients who either responded or did not respond to different anti-TNF-α therapies (adalimumab, etanercept or infliximab), and measured plasma levels of TNF-α, TNF-α soluble receptors, drug and anti-drug antibodies. Moreover, we analyzed the production of TNF-α and TNF-α soluble receptors by peripheral blood mononuclear cells (PBMCs), and characterized different monocyte populations. We found that: i) the drug levels varied between responders and non-responders; ii) anti-infliximab antibodies were present in 15% of infliximab-treated patients, while anti-etanercept or anti-adalimumab antibodies were never detected; iii) plasma TNF-α levels were higher in patients treated with etanercept compared to patients treated with adalimumab or infliximab; iv) PBMCs from patients responding to adalimumab and etanercept produced more TNF-α and sTNFRII in vitro than patients responding to infliximab; v) PBMCs from patients not responding to infliximab produce higher levels of TNF-α and sTNFRII than patients responding to infliximab; vi) anti- TNF-α drugs significantly altered monocyte subsets. A complex remodelling of the TNFα-TNFα receptor system thus takes place in patients treated with anti-TNF-α drugs, that involves either the production of anti-drug antibodies or the modulation of monocyte phenotype or inflammatory activity.


Assuntos
Adalimumab/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Fármacos Dermatológicos/uso terapêutico , Etanercepte/uso terapêutico , Infliximab/uso terapêutico , Psoríase/tratamento farmacológico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adalimumab/imunologia , Adulto , Idoso , Anti-Inflamatórios/imunologia , Anticorpos/sangue , Anticorpos/imunologia , Estudos de Coortes , Fármacos Dermatológicos/imunologia , Etanercepte/imunologia , Feminino , Humanos , Infliximab/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Psoríase/sangue , Psoríase/imunologia , Receptores do Fator de Necrose Tumoral/sangue , Receptores do Fator de Necrose Tumoral/imunologia , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologia
16.
Biochim Biophys Acta ; 1857(8): 1300-1306, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27033304

RESUMO

Lon protease is a nuclear-encoded, mitochondrial ATP-dependent protease highly conserved throughout the evolution, crucial for the maintenance of mitochondrial homeostasis. Lon acts as a chaperone of misfolded proteins, and is necessary for maintaining mitochondrial DNA. The impairment of these functions has a deep impact on mitochondrial functionality and morphology. An altered expression of Lon leads to a profound reprogramming of cell metabolism, with a switch from respiration to glycolysis, which is often observed in cancer cells. Mutations of Lon, which likely impair its chaperone properties, are at the basis of a genetic inherited disease named of the cerebral, ocular, dental, auricular, skeletal (CODAS) syndrome. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Assuntos
Anormalidades Craniofaciais/genética , DNA Mitocondrial/genética , Anormalidades do Olho/genética , Transtornos do Crescimento/genética , Luxação Congênita de Quadril/genética , Mitocôndrias/enzimologia , Chaperonas Moleculares/química , Mutação , Osteocondrodisplasias/genética , Protease La/química , Anormalidades Dentárias/genética , Reprogramação Celular , Anormalidades Craniofaciais/enzimologia , Anormalidades Craniofaciais/patologia , DNA Mitocondrial/metabolismo , Anormalidades do Olho/enzimologia , Anormalidades do Olho/patologia , Transtornos do Crescimento/enzimologia , Transtornos do Crescimento/patologia , Luxação Congênita de Quadril/enzimologia , Luxação Congênita de Quadril/patologia , Homeostase , Humanos , Mitocôndrias/patologia , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Osteocondrodisplasias/enzimologia , Osteocondrodisplasias/patologia , Protease La/genética , Protease La/metabolismo , Dobramento de Proteína , Anormalidades Dentárias/enzimologia , Anormalidades Dentárias/patologia
17.
Curr Pharm Des ; 22(18): 2679-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26831646

RESUMO

The preservation of mitochondrial function and integrity is critical for cell viability. Under stress conditions, unfolded, misfolded or damaged proteins accumulate in a certain compartment of the organelle, interfering with oxidative phosphorylation and normal mitochondrial functions. In stress conditions, several mechanisms, including mitochondrial unfolded protease response (UPRmt), fusion and fission, and mitophagy are engaged to restore normal proteostasis of the organelle. Mitochondrial proteases are a family of more than 20 enzymes that not only are involved in the UPRmt, but actively participate at multiple levels in the stress-response system. Alterations in their expression levels, or mutations that determine loss or gain of function of these proteases deeply impair mitochondrial functionality and can be associated with the onset of inherited diseases, with the development of neurodegenerative disorders and with the process of carcinogenesis. In this review, we focus our attention on six of them, namely CLPP, HTRA2 and LONP1, by analysing the current knowledge about their functions, their involvement in the pathogenesis of human diseases, and the compounds currently available for inhibiting their functions.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Humanos , Mitocôndrias/metabolismo , Desdobramento de Proteína/efeitos dos fármacos
18.
Oncotarget ; 6(28): 25466-83, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26314956

RESUMO

Mitochondrial Lon protease (Lon) regulates several mitochondrial functions, and is inhibited by the anticancer molecule triterpenoid 2-cyano-3, 12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO), or by its C-28 methyl ester derivative (CDDO-Me). To analyze the mechanism of action of triterpenoids, we investigated intramitochondrial reactive oxygen species (ROS), mitochondrial membrane potential, mitochondrial mass, mitochondrial dynamics and morphology, and Lon proteolytic activity in RKO human colon cancer cells, in HepG2 hepatocarcinoma cells and in MCF7 breast carcinoma cells. We found that CDDO and CDDO-Me are potent stressors for mitochondria in cancer cells, rather than normal non-transformed cells. In particular, they: i) cause depolarization; ii) increase mitochondrial ROS, iii) alter mitochondrial morphology and proteins involved in mitochondrial dynamics; iv) affect the levels of Lon and those of aconitase and human transcription factor A, which are targets of Lon activity; v) increase level of protein carbonyls in mitochondria; vi) lead to intrinsic apoptosis. The overexpression of Lon can rescue cells from cell death, providing an additional evidence on the role of Lon in conditions of excessive stress load.


Assuntos
Proteases Dependentes de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Inibidores de Proteases/farmacologia , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Aconitato Hidratase/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Peróxido de Hidrogênio/metabolismo , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Ácido Oleanólico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Superóxidos/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transfecção
19.
Exp Cell Res ; 337(2): 160-9, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26238601

RESUMO

Lipodystrophy (LD) is a main side effect of antiretroviral therapy for HIV infection, and can be provoked by nucleoside reverse transcriptase inhibitors (NRTIs) and protease inhibitors (PIs). LD exists in different forms, characterized by fat loss, accumulation, or both, but its pathogenesis is still unclear. In particular, few data exist concerning the effects of antiretroviral drugs on adipocyte differentiation. Adipose tissue can arise either from mesenchymal stem cells (MSCs), that include bone marrow-derived MSCs (hBM-MSCs), or from ectodermal stem cells, that include dental pulp stem cells (hDPSCs). To analyze whether the embryonal origin of adipocytes might impact the occurrence of different phenotypes in LD, we quantified the effects of several antiretroviral drugs on the adipogenic differentiation of hBM-MSCs and hDPSCs. hBM-MSCs and hDPSCs were isolated from healthy donors. Cells were treated with 10 and 50 µM stavudine (d4T), efavirenz (EFV), atazanavir (ATV), ritonavir (RTV), and ATV-boosted RTV. Viability and adipogenesis were evaluated by staining with propidium iodide, oil red, and adipoRed; mRNA levels of genes involved in adipocyte differentiation, i.e. CCAAT/enhancer-binding protein alpha (CEBPα) and peroxisome proliferator-activated receptor gamma (PPARγ), and in adipocyte functions, i.e. fatty acid synthase (FASN), fatty acid binding protein-4 (FABP4), perilipin-1 (PLIN1) and 1-acylglycerol-3-phosphate O-acyltransferase-2 (AGPAT2), were quantified by real time PCR. We found that ATV, RTV, EFV, and ATV-boosted RTV, but not d4T, caused massive cell death in both cell types. EFV and d4T affected the accumulation of lipid droplets and induced changes in mRNA levels of genes involved in adipocyte functions in hBM-MSCs, while RTV and ATV had little effects. All drugs stimulated the accumulation of lipid droplets in hDPSCs. Thus, the adipogenic differentiation of human stem cells can be influenced by antiretroviral drugs, and depends, at least in part, on their embryonal origin.


Assuntos
Adipócitos/efeitos dos fármacos , Antivirais/farmacologia , Polpa Dentária/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Infecções por Retroviridae/tratamento farmacológico , Retroviridae/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/virologia , Animais , Polpa Dentária/citologia , Polpa Dentária/virologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/virologia , Infecções por Retroviridae/patologia , Infecções por Retroviridae/virologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-26167193

RESUMO

Mitochondria are organelles responsible for several crucial cell functions, including respiration, oxidative phosphorylation, and regulation of apoptosis; they are also the main intracellular source of reactive oxygen species (ROS). In the last years, a particular interest has been devoted to studying the effects on mitochondria of natural compounds of vegetal origin, quercetin (Qu), resveratrol (RSV), and curcumin (Cur) being the most studied molecules. All these natural compounds modulate mitochondrial functions by inhibiting organelle enzymes or metabolic pathways (such as oxidative phosphorylation), by altering the production of mitochondrial ROS and by modulating the activity of transcription factors which regulate the expression of mitochondrial proteins. While Qu displays both pro- and antioxidant activities, RSV and Cur are strong antioxidant, as they efficiently scavenge mitochondrial ROS and upregulate antioxidant transcriptional programmes in cells. All the three compounds display a proapoptotic activity, mediated by the capability to directly cause the release of cytochrome c from mitochondria or indirectly by upregulating the expression of proapoptotic proteins of Bcl-2 family and downregulating antiapoptotic proteins. Interestingly, these effects are particularly evident on proliferating cancer cells and can have important therapeutic implications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA