Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 71(10): 2123-2135, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35877180

RESUMO

Long-term glucagon receptor (GCGR) agonism is associated with hyperglycemia and glucose intolerance, while acute GCGR agonism enhances whole-body insulin sensitivity and hepatic AKTSer473 phosphorylation. These divergent effects establish a critical gap in knowledge surrounding GCGR action. mTOR complex 2 (mTORC2) is composed of seven proteins, including RICTOR, which dictates substrate binding and allows for targeting of AKTSer473. We used a liver-specific Rictor knockout mouse (RictorΔLiver) to investigate whether mTORC2 is necessary for insulin receptor (INSR) and GCGR cross talk. RictorΔLiver mice were characterized by impaired AKT signaling and glucose intolerance. Intriguingly, RictorΔLiver mice were also resistant to GCGR-stimulated hyperglycemia. Consistent with our prior report, GCGR agonism increased glucose infusion rate and suppressed hepatic glucose production during hyperinsulinemic-euglycemic clamp of control animals. However, these benefits to insulin sensitivity were ablated in RictorΔLiver mice. We observed diminished AKTSer473 and GSK3α/ßSer21/9 phosphorylation in RictorΔLiver mice, whereas phosphorylation of AKTThr308 was unaltered in livers from clamped mice. These signaling effects were replicated in primary hepatocytes isolated from RictorΔLiver and littermate control mice, confirming cell-autonomous cross talk between GCGR and INSR pathways. In summary, our study reveals the necessity of RICTOR, and thus mTORC2, in GCGR-mediated enhancement of liver and whole-body insulin action.


Assuntos
Intolerância à Glucose , Hiperglicemia , Resistência à Insulina , Animais , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Homeostase , Hiperglicemia/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Insulina Regular Humana , Fígado/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Receptor de Insulina/metabolismo , Receptores de Glucagon/metabolismo , Serina-Treonina Quinases TOR/metabolismo
2.
JCI Insight ; 6(4)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33411693

RESUMO

Glucagon regulates glucose and lipid metabolism and promotes weight loss. Thus, therapeutics stimulating glucagon receptor (GCGR) signaling are promising for obesity treatment; however, the underlying mechanism(s) have yet to be fully elucidated. We previously identified that hepatic GCGR signaling increases circulating fibroblast growth factor 21 (FGF21), a potent regulator of energy balance. We reported that mice deficient for liver Fgf21 are partially resistant to GCGR-mediated weight loss, implicating FGF21 as a regulator of glucagon's weight loss effects. FGF21 signaling requires an obligate coreceptor (ß-Klotho, KLB), with expression limited to adipose tissue, liver, pancreas, and brain. We hypothesized that the GCGR-FGF21 system mediates weight loss through a central mechanism. Mice deficient for neuronal Klb exhibited a partial reduction in body weight with chronic GCGR agonism (via IUB288) compared with controls, supporting a role for central FGF21 signaling in GCGR-mediated weight loss. Substantiating these results, mice with central KLB inhibition via a pharmacological KLB antagonist, 1153, also displayed partial weight loss. Central KLB, however, is dispensable for GCGR-mediated improvements in plasma cholesterol and liver triglycerides. Together, these data suggest GCGR agonism mediates part of its weight loss properties through central KLB and has implications for future treatments of obesity and metabolic syndrome.


Assuntos
Glucagon/metabolismo , Proteínas Klotho/metabolismo , Receptores de Glucagon/metabolismo , Transdução de Sinais , Redução de Peso , Animais , Peso Corporal , Ingestão de Alimentos , Fatores de Crescimento de Fibroblastos/genética , Expressão Gênica , Glucose/metabolismo , Homeostase , Proteínas Klotho/genética , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Peptídeos
3.
Endocrinology ; 161(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31673703

RESUMO

Glucagon (GCG) is an essential regulator of glucose and lipid metabolism that also promotes weight loss. We have shown that glucagon-receptor (GCGR) signaling increases fatty acid oxidation (FAOx) in primary hepatocytes and reduces liver triglycerides in diet-induced obese (DIO) mice; however, the mechanisms underlying this aspect of GCG biology remains unclear. Investigation of hepatic GCGR targets elucidated a potent and previously unknown induction of leptin receptor (Lepr) expression. Liver leptin signaling is known to increase FAOx and decrease liver triglycerides, similar to glucagon action. Therefore, we hypothesized that glucagon increases hepatic LEPR, which is necessary for glucagon-mediated reversal of hepatic steatosis. Eight-week-old control and liver-specific LEPR-deficient mice (LeprΔliver) were placed on a high-fat diet for 12 weeks and then treated with a selective GCGR agonist (IUB288) for 14 days. Liver triglycerides and gene expression were assessed in liver tissue homogenates. Administration of IUB288 in both lean and DIO mice increased hepatic Lepr isoforms a-e in acute (4 hours) and chronic (72 hours,16 days) (P < 0.05) settings. LeprΔliver mice displayed increased hepatic triglycerides on a chow diet alone (P < 0.05), which persisted in a DIO state (P < 0.001), with no differences in body weight or composition. Surprisingly, chronic administration of IUB288 in DIO control and LeprΔliver mice reduced liver triglycerides regardless of genotype (P < 0.05). Together, these data suggest that GCGR activation induces hepatic Lepr expression and, although hepatic glucagon and leptin signaling have similar liver lipid targets, these appear to be 2 distinct pathways.


Assuntos
Fígado Gorduroso/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Peptídeos/farmacologia , Receptores de Glucagon/metabolismo , Receptores para Leptina/metabolismo , Animais , Área Sob a Curva , Dieta Hiperlipídica , Homeostase , Metabolismo dos Lipídeos/fisiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Obesidade/induzido quimicamente , Receptores de Glucagon/genética , Receptores para Leptina/genética , Transdução de Sinais
4.
Diabetes ; 67(11): 2157-2166, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150304

RESUMO

Glucagon receptor (GCGR) agonists cause hyperglycemia but also weight loss. However, GCG-like peptide 1 receptor (GLP1R)/GCGR mixed agonists do not exhibit the diabetogenic effects often attributed to GCGR activity. Thus, we sought to investigate the effect of glucagon agonism on insulin action and glucose homeostasis. Acute GCGR agonism induced immediate hyperglycemia, followed by improved glucose tolerance and enhanced glucose-stimulated insulin secretion. Moreover, acute GCGR agonism improved insulin tolerance in a dose-dependent manner in both lean and obese mice. Improved insulin tolerance was independent of GLP1R, FGF21, and hepatic glycogenolysis. Moreover, we observed increased glucose infusion rate, disposal, uptake, and suppressed endogenous glucose production during euglycemic clamps. Mice treated with insulin and GCGR agonist had enhanced phosphorylation of hepatic AKT at Ser473; this effect was reproduced in isolated mouse primary hepatocytes and resulted in increased AKT kinase activity. These data reveal that GCGR agonism enhances glucose tolerance, in part, by augmenting insulin action, with implications for the use of GCGR agonism in therapeutic strategies for diabetes.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Receptores de Glucagon/metabolismo , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Teste de Tolerância a Glucose , Insulina/farmacologia , Resistência à Insulina/fisiologia , Fígado/efeitos dos fármacos , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Glucagon/agonistas
5.
Diabetes ; 67(9): 1773-1782, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29925501

RESUMO

Glucagon, an essential regulator of glucose and lipid metabolism, also promotes weight loss, in part through potentiation of fibroblast growth factor 21 (FGF21) secretion. However, FGF21 is only a partial mediator of metabolic actions ensuing from glucagon receptor (GCGR) activation, prompting us to search for additional pathways. Intriguingly, chronic GCGR agonism increases plasma bile acid levels. We hypothesized that GCGR agonism regulates energy metabolism, at least in part, through farnesoid X receptor (FXR). To test this hypothesis, we studied whole-body and liver-specific FXR-knockout (Fxr∆liver) mice. Chronic GCGR agonist (IUB288) administration in diet-induced obese (DIO) Gcgr, Fgf21, and Fxr whole-body or liver-specific knockout (∆liver) mice failed to reduce body weight when compared with wild-type (WT) mice. IUB288 increased energy expenditure and respiration in DIO WT mice, but not Fxr∆liver mice. GCGR agonism increased [14C]palmitate oxidation in hepatocytes isolated from WT mice in a dose-dependent manner, an effect blunted in hepatocytes from Fxr∆liver mice. Our data clearly demonstrate that control of whole-body energy expenditure by GCGR agonism requires intact FXR signaling in the liver. This heretofore-unappreciated aspect of glucagon biology has implications for the use of GCGR agonism in the therapy of metabolic disorders.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Metabolismo Energético/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/efeitos dos fármacos , Obesidade/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Glucagon/agonistas , Adiposidade/efeitos dos fármacos , Animais , Calorimetria Indireta , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Especificidade de Órgãos , Fosforilação Oxidativa/efeitos dos fármacos , Peptídeos/uso terapêutico , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo , Transdução de Sinais/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA