Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 1048746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408191

RESUMO

The disorders known as bone marrow failure syndromes (BMFS) are life-threatening disorders characterized by absence of one or more hematopoietic lineages in the peripheral blood. Myelodysplastic syndromes (MDS) are now considered BMF disorders with associated cellular dysplasia. BMFs and MDS are caused by decreased fitness of hematopoietic stem cells (HSC) and poor hematopoiesis. BMF and MDS can occur de novo or secondary to hematopoietic stress, including following bone marrow transplantation or myeloablative therapy. De novo BMF and MDS are usually associated with specific genetic mutations. Genes that are commonly mutated in BMF/MDS are in DNA repair pathways, epigenetic regulators, heme synthesis. Despite known and common gene mutations, BMF and MDS are very heterogenous in nature and non-genetic factors contribute to disease phenotype. Inflammation is commonly found in BMF and MDS, and contribute to ineffective hematopoiesis. Another common feature of BMF and MDS, albeit less known, is abnormal mitochondrial functions. Mitochondria are the power house of the cells. Beyond energy producing machinery, mitochondrial communicate with the rest of the cells via triggering stress signaling pathways and by releasing numerous metabolite intermediates. As a result, mitochondria play significant roles in chromatin regulation and innate immune signaling pathways. The main goal of this review is to investigate BMF processes, with a focus mitochondria-mediated signaling in acquired and inherited BMF.

2.
Stem Cell Rev Rep ; 16(6): 1335-1342, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32789803

RESUMO

Nicotinamide (NAM) a form of vitamin B3, is an essential precursor of NAD. This dinucleotide (pyridine nucleotide) participates in the regulation of fundamental processes including transcription, cell cycle progression and DNA repair. Here we assessed the effect of NAM on myeloid differentiation of the IL-3 dependent, multipotent hematopoietic progenitor cell line FDCP-Mix. We found that NAM reduces the pSTAT5 signaling response, cell cycling and self-renewal potential. It initiates an atypical program of myeloid differentiation that results in the emergence of granulocytic cells in the absence of added myeloid differentiation factors. NAM did not affect the expression the of cell surface granulocyte marker GR1 but led to a strong downregulation of MHC-II molecules. Taken together our data show that NAM induces a differentiation program in hematopoietic progenitors prompting them to undergo differentiation along the granulocyte path without reaching the status of fully developed granulocytes. Graphical abstract.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Granulócitos/citologia , Células-Tronco Multipotentes/citologia , Niacinamida/farmacologia , Biomarcadores/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Granulócitos/efeitos dos fármacos , Granulócitos/metabolismo , Humanos , Interleucina-3/farmacologia , Células-Tronco Multipotentes/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA