Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(22): 5546-5576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34955042

RESUMO

Medicinally important plant-foods offer a balanced immune function, which is essential for protecting the body against antigenic invasion, mainly by microorganisms. Immunomodulators play pivotal roles in supporting immune function either suppressing or stimulating the immune system's response to invading pathogens. Among different immunomodulators, plant-based secondary metabolites have emerged as high potential not only for immune defense but also for cellular immunoresponsiveness. These natural immunomodulators can be developed into safer alternatives to the clinically used immunosuppressants and immunostimulant cytotoxic drugs which possess serious side effects. Many plants of different species have been reported to possess strong immunomodulating properties. The immunomodulatory effects of plant extracts and their bioactive metabolites have been suggested due to their diverse mechanisms of modulation of the complex immune system and their multifarious molecular targets. Phytochemicals such as alkaloids, flavonoids, terpenoids, carbohydrates and polyphenols have been reported as responsible for the immunomodulatory effects of several medicinal plants. This review illustrates the potent immunomodulatory effects of 65 plant secondary metabolites, including dietary compounds and their underlying mechanisms of action on cellular and humoral immune functions in in vitro and in vivo studies. The clinical potential of some of the compounds to be used for various immune-related disorders is highlighted.


Assuntos
Alcaloides , Plantas Medicinais , Plantas Medicinais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/metabolismo , Fatores Imunológicos/farmacologia , Adjuvantes Imunológicos/metabolismo , Imunidade
2.
Food Sci Nutr ; 10(6): 1789-1819, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35702283

RESUMO

The genus Syzygium comprises 1200-1800 species that belong to the family of Myrtaceae. Moreover, plants that are belonged to this genus are being used in the traditional system of medicine in Asian countries, especially in China, India, and Bangladesh. The aim of this review is to describe the scientific works and to provide organized information on the available traditional uses, phytochemical constituents, and pharmacological activities of mostly available species of the genus Syzygium in Bangladesh. The information related to genus Syzygium was analytically composed from the scientific databases, including PubMed, Google Scholar, Science Direct, Web of Science, Wiley Online Library, Springer, Research Gate link, published books, and conference proceedings. Bioactive compounds such as flavanone derivatives, ellagic acid derivatives and other polyphenolics, and terpenoids are reported from several species of the genus Syzygium. However, many members of the species of the genus Syzygium need further comprehensive studies regarding phytochemical constituents and mechanism-based pharmacological activities.

3.
Food Sci Nutr ; 9(7): 3777-3805, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34262737

RESUMO

In the present study, the aerial parts of Achyranthes ferruginea underwent investigation of their in vitro antioxidant and free radical-scavenging activities in cell-free conditions, their phytoconstituents using gas chromatography-mass spectrometry (GC-MS), and their cytotoxic activity in HeLa cells. A. ferruginea was extracted with 80% methanol and successively fractionated with solvents to yield petroleum ether (PEF), chloroform (CHF), ethyl acetate (EAF), and aqueous (AQF) fractions. GC-MS analysis revealed that CHF contained ten phytoconstituents, including different forms of octadecanoic acid methyl esters. The total antioxidant and ferric-reducing antioxidant capacities of the extracts and the standard catechin (CA) were as follows: CA >CHF >PEF >CME (crude methanolic extract) >EAF >AQF, and CA >CHF >EAF >PEF >AQF >CME, respectively. CHF showed the highest DPPH-free radical-scavenging activity, with a median inhibitory concentration of 10.5 ± 0.28 µg/ml, which was slightly higher than that of the standard butylated hydroxytoluene (12.0 ± 0.09 µg/ml). In the hydroxyl radical-scavenging assay, CHF showed identical scavenging activity (9.25 ± 0.73 µg/ml) when compared to CA (10.50 ± 1.06 µg/ml). Moreover, CHF showed strong cytotoxic activity (19.95 ± 1.18 µg/ml) in HeLa cells, which was alike to that of the standards vincristine sulfate and 5-fluorouracil (15.84 ± 1.64 µg/ml and 12.59 ± 1.75 µg/ml, respectively). The in silico study revealed that identified compounds were significantly linked to the targets of various cancer cells and oxidative enzymes. However, online prediction by SwissADME, admetSAR, and PASS showed that it has drug-like, nontoxic, and potential pharmacological actions.

4.
Integr Cancer Ther ; 19: 1534735420969809, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33176517

RESUMO

In this study, we evaluated the antiproliferative and antimetastatic effects of the Pleurotus highking mushroom on the human triple-negative breast cancer cell lines MDA-MB-231 and HCC-1937 and attempted to elucidate the underlying molecular mechanisms. The antiproliferative effects of P. highking purified fraction-III (PEF-III) were investigated using colony formation and MTS assays. The antimigratory effects of PEF-III were determined by wound healing, transwell migration, and matrigel cell invasion assays. The protein expression levels were evaluated using Western blot analysis. The effect of PEF-III on tumor-sphere formation was examined in a 3D sphere-forming medium, and the mRNA expressions of proliferation- and migration-related genes in the cells from the tumor spheres were determined using RT-qPCR. PEF-III treatment caused a potent and concentration-dependent decrease in the numbers of colonies and viable cells. It also remarkably suppressed the migratory ability of the cells. Mechanistically, PEF-III treatment reduced the expression of pAkt, matrix metallopeptidase-9 (MMP-9), and vimentin. Furthermore, PEF-III reduced the number and size of the tumor spheres in the 3D culture system. It also significantly reduced the mRNA expression of Ki-67, MMP-9, and vimentin in the PEF-III-treated tumor-sphere cells. PEF-III exerted promising antiproliferative and antimigratory effects in triple-negative breast cancer cell lines by suppressing Akt signaling. Therefore, P. highking mushrooms may be considered a potential source for the development of potent anticancer drug(s) for the treatment of breast cancer.


Assuntos
Agaricales , Neoplasias da Mama , Carcinoma Hepatocelular , Neoplasias Hepáticas , Pleurotus , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA