Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Microbiol Spectr ; 12(5): e0378823, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38567974

RESUMO

The key to a curative treatment of hepatitis B virus (HBV) infection is the eradication of the intranuclear episomal covalently closed circular DNA (cccDNA), the stable persistence reservoir of HBV. Currently, established therapies can only limit HBV replication but fail to tackle the cccDNA. Thus, novel therapeutic approaches toward curative treatment are urgently needed. Recent publications indicated a strong association between the HBV core protein SUMOylation and the association with promyelocytic leukemia nuclear bodies (PML-NBs) on relaxed circular DNA to cccDNA conversion. We propose that interference with the cellular SUMOylation system and PML-NB integrity using arsenic trioxide provides a useful tool in the treatment of HBV infection. Our study showed a significant reduction in HBV-infected cells, core protein levels, HBV mRNA, and total DNA. Additionally, a reduction, albeit to a limited extent, of HBV cccDNA could be observed. Furthermore, this interference was also applied for the treatment of an established HBV infection, characterized by a stably present nuclear pool of cccDNA. Arsenic trioxide (ATO) treatment not only changed the amount of expressed HBV core protein but also induced a distinct relocalization to an extranuclear phenotype during infection. Moreover, ATO treatment resulted in the redistribution of transfected HBV core protein away from PML-NBs, a phenotype similar to that previously observed with SUMOylation-deficient HBV core. Taken together, these findings revealed the inhibition of HBV replication by ATO treatment during several steps of the viral replication cycle, including viral entry into the nucleus as well as cccDNA formation and maintenance. We propose ATO as a novel prospective treatment option for further pre-clinical and clinical studies against HBV infection. IMPORTANCE: The main challenge for the achievement of a functional cure for hepatitis B virus (HBV) is the covalently closed circular DNA (cccDNA), the highly stable persistence reservoir of HBV, which is maintained by further rounds of infection with newly generated progeny viruses or by intracellular recycling of mature nucleocapsids. Eradication of the cccDNA is considered to be the holy grail for HBV curative treatment; however, current therapeutic approaches fail to directly tackle this HBV persistence reservoir. The molecular effect of arsenic trioxide (ATO) on HBV infection, protein expression, and cccDNA formation and maintenance, however, has not been characterized and understood until now. In this study, we reveal ATO treatment as a novel and innovative therapeutic approach against HBV infections, repressing viral gene expression and replication as well as the stable cccDNA pool at low micromolar concentrations by affecting the cellular function of promyelocytic leukemia nuclear bodies.


Assuntos
Trióxido de Arsênio , Núcleo Celular , DNA Circular , DNA Viral , Vírus da Hepatite B , Hepatite B , Sumoilação , Replicação Viral , Trióxido de Arsênio/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Humanos , Replicação Viral/efeitos dos fármacos , Hepatite B/virologia , Hepatite B/tratamento farmacológico , Hepatite B/metabolismo , Sumoilação/efeitos dos fármacos , DNA Circular/genética , DNA Circular/metabolismo , Núcleo Celular/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Antivirais/farmacologia , Proteínas do Core Viral/metabolismo , Proteínas do Core Viral/genética , Células Hep G2
2.
Gut ; 73(4): 668-681, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-37973365

RESUMO

OBJECTIVES: Chronic hepatitis B (CHB) caused by HBV infection greatly increases the risk of liver cirrhosis and hepatocellular carcinoma. Hepatitis B surface antigen (HBsAg) plays critical roles in the pathogenesis of CHB. HBsAg loss is the key indicator for cure of CHB, but is rarely achieved by current approved anti-HBV drugs. Therefore, novel anti-HBV strategies are urgently needed to achieve sustained HBsAg loss. DESIGN: We developed multiple chimeric antigen receptors (CARs) based on single-chain variable fragments (scFvs, namely MA18/7-scFv and G12-scFv), respectively, targeting HBV large and small envelope proteins. Their impacts on HBsAg secretion and HBV infection, and the underlying mechanisms, were extensively investigated using various cell culture models and HBV mouse models. RESULTS: After secretory signal peptide mediated translocation into endoplasmic reticulum (ER) and secretory pathway, MA18/7-scFv and CARs blocked HBV infection and virion secretion. G12-scFv preferentially inhibited virion secretion, while both its CAR formats and crystallisable fragment (Fc)-attached versions blocked HBsAg secretion. G12-scFv and G12-CAR arrested HBV envelope proteins mainly in ER and potently inhibited HBV budding. Furthermore, G12-scFv-Fc and G12-CAR-Fc strongly suppressed serum HBsAg up to 130-fold in HBV mouse models. The inhibitory effect lasted for at least 8 weeks when delivered by an adeno-associated virus vector. CONCLUSION: CARs possess direct antiviral activity, besides the well-known application in T-cell therapy. Fc attached G12-scFv and G12-CARs could provide a novel approach for reducing circulating HBsAg.


Assuntos
Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Receptores de Antígenos Quiméricos , Camundongos , Animais , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B/genética , Retículo Endoplasmático/metabolismo
3.
Microbiol Spectr ; 11(3): e0044623, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199632

RESUMO

Persistence of hepatitis B virus (HBV) infection is due to a nuclear covalently closed circular DNA (cccDNA), generated from the virion-borne relaxed circular DNA (rcDNA) genome in a process likely involving numerous cell factors from the host DNA damage response (DDR). The HBV core protein mediates rcDNA transport to the nucleus and likely affects stability and transcriptional activity of cccDNA. Our study aimed at investigating the role of HBV core protein and its posttranslational modification (PTM) with SUMO (small ubiquitin-like modifiers) during the establishment of cccDNA. HBV core protein SUMO PTM was analyzed in His-SUMO-overexpressing cell lines. The impact of HBV core SUMOylation on association with cellular interaction partners and on the HBV life cycle was determined using SUMOylation-deficient mutants of the HBV core protein. Here, we show that the HBV core protein is posttranslationally modified by the addition of SUMO and that this modification impacts nuclear import of rcDNA. By using SUMOylation-deficient HBV core mutants, we show that SUMO modification is a prerequisite for the association with specific promyelocytic leukemia nuclear bodies (PML-NBs) and regulates the conversion of rcDNA to cccDNA. By in vitro SUMOylation of HBV core, we obtained evidence that SUMOylation triggers nucleocapsid disassembly, providing novel insights into the nuclear import process of rcDNA. HBV core protein SUMOylation and subsequent association with PML bodies in the nucleus constitute a key step in the conversion of HBV rcDNA to cccDNA and therefore a promising target for inhibiting formation of the HBV persistence reservoir. IMPORTANCE HBV cccDNA is formed from the incomplete rcDNA involving several host DDR proteins. The exact process and the site of cccDNA formation are poorly understood. Here, we show that HBV core protein SUMO modification is a novel PTM regulating the function of HBV core. A minor specific fraction of the HBV core protein resides with PML-NBs in the nuclear matrix. SUMO modification of HBV core protein mediates its recruitment to specific PML-NBs within the host cell. Within HBV nucleocapsids, SUMOylation of HBV core induces HBV capsid disassembly and is a prerequisite for nuclear entry of HBV core. SUMO HBV core protein association with PML-NBs is crucial for efficient conversion of rcDNA to cccDNA and for the establishment of the viral persistence reservoir. HBV core protein SUMO modification and the subsequent association with PML-NBs might constitute a potential novel target in the development of drugs targeting the cccDNA.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Vírus da Hepatite B/genética , Corpos Nucleares da Leucemia Promielocítica , DNA Circular/genética , DNA Circular/metabolismo , Replicação Viral/genética , DNA Viral/genética , Hepatite B/genética
4.
Gut ; 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36591611

RESUMO

OBJECTIVES: Chronic hepatitis B virus (HBV) infection is a leading cause of liver disease and hepatocellular carcinoma. A key feature of HBV replication is the synthesis of the covalently close circular (ccc)DNA, not targeted by current treatments and whose elimination would be crucial for viral cure. To date, little is known about cccDNA formation. One major challenge to address this urgent question is the absence of robust models for the study of cccDNA biology. DESIGN: We established a cell-based HBV cccDNA reporter assay and performed a loss-of-function screen targeting 239 genes encoding the human DNA damage response machinery. RESULTS: Overcoming the limitations of current models, the reporter assay enables to quantity cccDNA levels using a robust ELISA as a readout. A loss-of-function screen identified 27 candidate cccDNA host factors, including Y box binding protein 1 (YBX1), a DNA binding protein regulating transcription and translation. Validation studies in authentic infection models revealed a robust decrease in HBV cccDNA levels following silencing, providing proof-of-concept for the importance of YBX1 in the early steps of the HBV life cycle. In patients, YBX1 expression robustly correlates with both HBV load and liver disease progression. CONCLUSION: Our cell-based reporter assay enables the discovery of HBV cccDNA host factors including YBX1 and is suitable for the characterisation of cccDNA-related host factors, antiviral targets and compounds.

5.
Curr Opin Virol ; 49: 41-51, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34029994

RESUMO

Chronic infection with HBV is a major cause of advanced liver disease and hepatocellular carcinoma. Nucleos(t)ide analogues effectively control HBV replication but viral cure is rare. Hence treatment has often to be administered for an indefinite duration, increasing the risk for selection of drug resistant virus variants. PEG-interferon-α-based therapies can sometimes cure infection but suffer from a low response rate and severe side-effects. CHB is characterized by the persistence of a nuclear covalently closed circular DNA (cccDNA), which is not targeted by approved drugs. Targeting host factors which contribute to the viral life cycle provides new opportunities for the development of innovative therapeutic strategies aiming at HBV cure. An improved understanding of the host immune system has resulted in new potentially curative candidate approaches. Here, we review the recent advances in understanding HBV-host interactions and highlight how this knowledge contributes to exploiting host-targeting strategies for a viral cure.


Assuntos
Antivirais/uso terapêutico , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Interações Hospedeiro-Patógeno , Animais , Capsídeo/metabolismo , DNA Circular/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Hepatite B Crônica/imunologia , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/antagonistas & inibidores , Simportadores/metabolismo , Transcrição Gênica , Montagem de Vírus , Internalização do Vírus/efeitos dos fármacos
6.
Elife ; 92020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32795390

RESUMO

Hepatitis B virus (HBV) is an important but difficult to study human pathogen. Most basics of the hepadnaviral life-cycle were unraveled using duck HBV (DHBV) as a model although DHBV has a capsid protein (CP) comprising ~260 rather than ~180 amino acids. Here we present high-resolution structures of several DHBV capsid-like particles (CLPs) determined by electron cryo-microscopy. As for HBV, DHBV CLPs consist of a dimeric α-helical frame-work with protruding spikes at the dimer interface. A fundamental new feature is a ~ 45 amino acid proline-rich extension in each monomer replacing the tip of the spikes in HBV CP. In vitro, folding of the extension takes months, implying a catalyzed process in vivo. DHBc variants lacking a folding-proficient extension produced regular CLPs in bacteria but failed to form stable nucleocapsids in hepatoma cells. We propose that the extension domain acts as a conformational switch with differential response options during viral infection.


Assuntos
Proteínas do Capsídeo/química , Vírus da Hepatite B do Pato/química , Dobramento de Proteína , Sequência de Aminoácidos , Animais , Linhagem Celular , Galinhas , Microscopia Crioeletrônica , Patos/virologia , Vírus da Hepatite B do Pato/genética , Modelos Moleculares , Nucleocapsídeo/metabolismo , Estrutura Secundária de Proteína , Replicação Viral
7.
Nat Commun ; 11(1): 2707, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483149

RESUMO

Chronic HBV infection is a major cause of liver disease and cancer worldwide. Approaches for cure are lacking, and the knowledge of virus-host interactions is still limited. Here, we perform a genome-wide gain-of-function screen using a poorly permissive hepatoma cell line to uncover host factors enhancing HBV infection. Validation studies in primary human hepatocytes identified CDKN2C as an important host factor for HBV replication. CDKN2C is overexpressed in highly permissive cells and HBV-infected patients. Mechanistic studies show a role for CDKN2C in inducing cell cycle G1 arrest through inhibition of CDK4/6 associated with the upregulation of HBV transcription enhancers. A correlation between CDKN2C expression and disease progression in HBV-infected patients suggests a role in HBV-induced liver disease. Taken together, we identify a previously undiscovered clinically relevant HBV host factor, allowing the development of improved infectious model systems for drug discovery and the study of the HBV life cycle.


Assuntos
Inibidor de Quinase Dependente de Ciclina p18/genética , Mutação com Ganho de Função , Testes Genéticos/métodos , Estudo de Associação Genômica Ampla/métodos , Hepatite B/genética , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p18/metabolismo , Perfilação da Expressão Gênica/métodos , Células HEK293 , Células Hep G2 , Hepatite B/metabolismo , Hepatite B/virologia , Vírus da Hepatite B/fisiologia , Interações entre Hospedeiro e Microrganismos , Humanos , Estimativa de Kaplan-Meier , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Interferência de RNA , Replicação Viral/fisiologia
8.
J Hepatol ; 72(5): 865-876, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31863794

RESUMO

BACKGROUND & AIMS: Non-cytolytic cure of HBV-infected hepatocytes by cytokines, including type I interferons (IFNs), is of importance for resolving acute and chronic infection. However, as IFNs stimulate hundreds of genes, those most relevant for HBV suppression remain largely unknown. Amongst them are the large myxovirus resistance (Mx) GTPases. Human MX1 (or MxA) is active against many RNA viruses, while MX2 (or MxB) was recently found to restrict HIV-1, HCV, and herpesviruses. Herein, we investigated the anti-HBV activity of MX2. METHODS: The potential anti-HBV activity of MX2 and functional variants were assessed in transfected and HBV-infected hepatoma cells and primary human hepatocytes, employing multiple assays to analyze the synthesis and decay of HBV nucleic acids. The specific roles of MX2 in IFN-α-driven inhibition of HBV transcription and replication were assessed by MX2-specific shRNA interference (RNAi). RESULTS: Both MX2 alone and IFN-α substantially inhibited HBV replication, due to significant deceleration of the synthesis and slight acceleration of the turnover of viral RNA. RNAi knockdown of MX2 significantly reduced the inhibitory effects of IFN-α. Strikingly, MX2 inhibited HBV infection by reducing covalently closed circular DNA (cccDNA), most likely by indirectly impairing the conversion of relaxed circular DNA to cccDNA rather than by destabilizing existing cccDNA. Various mutations affecting the GTPase activity and oligomerization status reduced MX2's anti-HBV activity. CONCLUSION: MX2 is an important IFN-α inducible effector that decreases HBV RNA levels but can also potently inhibit HBV infection by indirectly impairing cccDNA formation. MX2 likely has the potential for therapeutic applications aimed at curing HBV infection by eliminating cccDNA. LAY SUMMARY: This study shows that the protein MX2, which is induced by interferon-α, has important anti-hepatitis B virus (HBV) effector functions. MX2 can reduce the amount of covalently closed circular DNA, which is the form of DNA that HBV uses to maintain viral persistence within hepatocytes. MX2 also reduces HBV RNA levels by downregulating synthesis of viral RNA. MX2 likely represents a novel intrinsic HBV inhibitor that could have therapeutic potential, as well as being useful for improving our understanding of the complex biology of HBV and the antiviral mechanisms of interferon-α.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/fisiologia , Hepatite B/metabolismo , Interferon-alfa/farmacologia , Proteínas de Resistência a Myxovirus/deficiência , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , DNA Circular/metabolismo , DNA Viral/metabolismo , Técnicas de Silenciamento de Genes , Células Hep G2 , Hepatite B/imunologia , Hepatite B/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Proteínas de Resistência a Myxovirus/genética , Interferência de RNA , RNA Viral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transfecção
9.
Gut ; 68(5): 905-915, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30622109

RESUMO

OBJECTIVE: A hallmark of chronic HBV (cHBV) infection is the presence of impaired HBV-specific CD8+ T cell responses. Functional T cell exhaustion induced by persistent antigen stimulation is considered a major mechanism underlying this impairment. However, due to their low frequencies in chronic infection, it is currently unknown whether HBV-specific CD8+ T cells targeting different epitopes are similarly impaired and share molecular profiles indicative of T cell exhaustion. DESIGN: By applying peptide-loaded MHC I tetramer-based enrichment, we could detect HBV-specific CD8+ T cells targeting epitopes in the HBV core and the polymerase proteins in the majority of 85 tested cHBV patients with low viral loads. Lower detection rates were obtained for envelope-specific CD8+ T cells. Subsequently, we performed phenotypic and functional in-depth analyses. RESULTS: HBV-specific CD8+ T cells are not terminally exhausted but rather exhibit a memory-like phenotype in patients with low viral load possibly reflecting weak ongoing cognate antigen recognition. Moreover, HBV-specific CD8+ T cells targeting core versus polymerase epitopes significantly differed in frequency, phenotype and function. In particular, in comparison with core-specific CD8+ T cells, a higher frequency of polymerase-specific CD8+ T cells expressed CD38, KLRG1 and Eomes accompanied by low T-bet expression and downregulated CD127 indicative of a more severe T cell exhaustion. In addition, polymerase-specific CD8+ T cells exhibited a reduced expansion capacity that was linked to a dysbalanced TCF1/BCL2 expression. CONCLUSIONS: Overall, the molecular mechanisms underlying impaired T cell responses differ with respect to the targeted HBV antigens. These results have potential implications for immunotherapeutic approaches in HBV cure.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Produtos do Gene pol/metabolismo , Vírus da Hepatite B/imunologia , Hepatite B Crônica/metabolismo , Proteínas do Core Viral/metabolismo , Carga Viral , Adulto , Idoso , Estudos de Coortes , Feminino , Hepatite B Crônica/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo
10.
Antiviral Res ; 162: 118-129, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30599174

RESUMO

Hepatitis B virus (HBV) envelopes as well as empty subviral particles carry in their lipid membranes the small (S), middle (M), and large (L) surface proteins, collectively known as hepatitis B surface antigen (HBsAg). Due to their common S domain all three proteins share a surface-exposed hydrophilic antigenic loop (AGL) with a complex disulfide bridge-dependent structure. The AGL is critical for HBV infectivity and virion secretion, and thus represents a major target for neutralizing antibodies. Previously, a human monoclonal antibody (mAb) targeting a conformational epitope in the AGL, IgG12, exhibited 1000-fold higher neutralizing activity than hepatitis B immune globulin (HBIG). Here we designed a single-chain variable fragment (scFv) homolog of IgG12, G12-scFv, which could be efficiently produced in soluble form in the cytoplasm of E. coli SHuffle cells. Independent in vitro assays verified specific binding of G12-scFv to a conformational S epitope shared with IgG12. Despite 20-fold lower affinity, G12-scFv but not an irrelevant scFv potently neutralized HBV infection of susceptible hepatoma cells (IC50 = 1.8 nM). Strikingly, low concentrations of G12-scFv blocked virion secretion from HBV producing cells (IC50 = 1.25 nM) without disturbing intracellular viral replication, whereas extracellular HBsAg was reduced only at >100-fold higher though still nontoxic concentration. The inhibitory effects correlated with S binding specificity and presumably also G12-scFv internalization into cells. Together these data suggest G12-scFv as a highly specific yet easily accessible novel tool for basic, diagnostic, and possibly future therapeutic applications.


Assuntos
Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B/efeitos dos fármacos , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/farmacologia , Vírion/efeitos dos fármacos , Anticorpos Neutralizantes , Escherichia coli , Células Hep G2 , Vírus da Hepatite B/fisiologia , Humanos , Concentração Inibidora 50 , Anticorpos de Cadeia Única/biossíntese , Vírion/fisiologia , Replicação Viral/efeitos dos fármacos
11.
PLoS Pathog ; 14(12): e1007488, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30566530

RESUMO

Hepatitis B virus (HBV) replicates its 3 kb DNA genome through capsid-internal reverse transcription, initiated by assembly of 120 core protein (HBc) dimers around a complex of viral pregenomic (pg) RNA and polymerase. Following synthesis of relaxed circular (RC) DNA capsids can be enveloped and secreted as stable virions. Upon infection of a new cell, however, the capsid disintegrates to release the RC-DNA into the nucleus for conversion into covalently closed circular (ccc) DNA. HBc´s interactions with nucleic acids are mediated by an arginine-rich C terminal domain (CTD) with intrinsically strong non-specific RNA binding activity. Adaptation to the changing demands for nucleic acid binding during the viral life cycle is thought to involve dynamic phosphorylation / dephosphorylation events. However, neither the relevant enzymes nor their target sites in HBc are firmly established. Here we developed a bacterial coexpression system enabling access to definably phosphorylated HBc. Combining Phos-tag gel electrophoresis, mass spectrometry and mutagenesis we identified seven of the eight hydroxy amino acids in the CTD as target sites for serine-arginine rich protein kinase 1 (SRPK1); fewer sites were phosphorylated by PKA and PKC. Phosphorylation of all seven sites reduced nonspecific RNA encapsidation as drastically as deletion of the entire CTD and altered CTD surface accessibility, without major structure changes in the capsid shell. The bulk of capsids from human hepatoma cells was similarly highly, yet non-identically, phosphorylated as by SRPK1. While not proving SRPK1 as the infection-relevant HBc kinase the data suggest a mechanism whereby high-level HBc phosphorylation principally suppresses RNA binding whereas one or few strategic dephosphorylation events enable selective packaging of the pgRNA/polymerase complex. The tools developed in this study should greatly facilitate the further deciphering of the role of HBc phosphorylation in HBV infection and its evaluation as a potential new therapeutic target.


Assuntos
Vírus da Hepatite B/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas do Core Viral/metabolismo , Replicação Viral/fisiologia , Capsídeo/fisiologia , Proteínas do Capsídeo/metabolismo , Hepatite B , Humanos , Espectrometria de Massas/métodos , Mutagênese Sítio-Dirigida/métodos , Fosforilação , RNA Viral , Montagem de Vírus/fisiologia
12.
J Mol Biol ; 430(24): 4941-4954, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30539760

RESUMO

Hepatitis B virus is a major human pathogen that consists of a viral genome surrounded by an icosahedrally ordered core protein and a polymorphic, lipidic envelope that is densely packed with surface proteins. A point mutation in the core protein in which a phenylalanine at position 97 is exchanged for a smaller leucine leads to premature envelopment of the capsid before the genome maturation is fully completed. We have used electron cryo-microscopy and image processing to investigate how the point mutation affects the structure of the capsid at 2.6- to 2.8 Å-resolution. We found that in the mutant the smaller side chain at position 97 is displaced, increasing the size of an adjacent pocket in the center of the spikes of the capsid. In the mutant, this pocket is filled with an unknown density. Phosphorylation of serine residues in the unresolved C-terminal domain of the mutant leaves the structure of the ordered capsid largely unchanged. However, we were able to resolve several previously unresolved residues downstream of proline 144 that precede the phosphorylation-sites. These residues pack against the neighboring subunits and increase the inter-dimer contact suggesting that the C-termini play an important role in capsid stabilization and provide a much larger interaction interface than previously observed.


Assuntos
Capsídeo/química , Vírus da Hepatite B/metabolismo , Mutação Puntual , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Capsídeo/metabolismo , Cristalografia por Raios X , Vírus da Hepatite B/química , Vírus da Hepatite B/genética , Microscopia Eletrônica , Modelos Moleculares , Fenótipo , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Serina/metabolismo , Proteínas do Core Viral/genética
13.
Chemphyschem ; 19(11): 1336-1340, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29542854

RESUMO

The hepatitis B virus (HBV) icosahedral nucleocapsid is assembled from 240 chemically identical core protein molecules and, structurally, comprises four groups of symmetrically nonequivalent subunits. We show here that this asymmetry is reflected in solid-state NMR spectra of the capsids, in which peak splitting is observed for a subset of residues. We compare this information to dihedral angle variations from available 3D structures and also to computational predictions of "dynamic" domains and molecular hinges. We find that although, at the given resolution, dihedral angles variations directly obtained from the X-ray structures are not precise enough to be interpreted, the chemical-shift information from NMR correlates, and interestingly goes beyond, information from bioinformatics approaches. Our study reveals the high sensitivity with which NMR can detect the residues allowing the subtle conformational adaptations needed in lattice formation. Our findings are important for understanding the formation and modulation of protein assemblies in general.


Assuntos
Capsídeo/química , Vírus da Hepatite B/química , Ressonância Magnética Nuclear Biomolecular , Proteínas do Core Viral/química , Biologia Computacional , Modelos Moleculares , Conformação Proteica
14.
Biomol NMR Assign ; 12(1): 205-214, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29450824

RESUMO

Each year, nearly 900,000 deaths are due to serious liver diseases caused by chronic hepatitis B virus infection. The viral particle is composed of an outer envelope and an inner icosahedral nucleocapsid formed by multiple dimers of a ~ 20 kDa self-assembling core protein (Cp). Here we report the solid-state 13C and 15N resonance assignments of the assembly domain, Cp149, of the core protein in its capsid form. A secondary chemical shift analysis of the 140 visible residues suggests an overall alpha-helical three-dimensional fold matching that derived for Cp149 from the X-ray crystallography of the capsid, and from solution-state NMR of the Cp149 dimer. Interestingly, however, at three distinct regions the chemical shifts in solution differ significantly between core proteins in the capsid state versus in the dimer state, strongly suggesting the respective residues to be involved in capsid assembly.


Assuntos
Vírus da Hepatite B , Ressonância Magnética Nuclear Biomolecular , Proteínas do Core Viral/química , Domínios Proteicos
15.
J Hepatol ; 68(6): 1114-1122, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29428874

RESUMO

BACKGROUND & AIMS: All known hepatitis B virus (HBV) genotypes occur in humans and hominoid Old World non-human primates (NHPs). The divergent woolly monkey HBV (WMHBV) forms another orthohepadnavirus species. The evolutionary origins of HBV are unclear. METHODS: We analysed sera from 124 Brazilian monkeys collected during 2012-2016 for hepadnaviruses using molecular and serological tools, and conducted evolutionary analyses. RESULTS: We identified a novel orthohepadnavirus species in capuchin monkeys (capuchin monkey hepatitis B virus [CMHBV]). We found CMHBV-specific antibodies in five animals and high CMHBV concentrations in one animal. Non-inflammatory, probably chronic infection was consistent with an intact preCore domain, low genetic variability, core deletions in deep sequencing, and no elevated liver enzymes. Cross-reactivity of antisera against surface antigens suggested antigenic relatedness of HBV, CMHBV, and WMHBV. Infection-determining CMHBV surface peptides bound to the human HBV receptor (human sodium taurocholate co-transporting polypeptide), but preferentially interacted with the capuchin monkey receptor homologue. CMHBV and WMHBV pseudotypes infected human hepatoma cells via the human sodium taurocholate co-transporting polypeptide, and were poorly neutralised by HBV vaccine-derived antibodies, suggesting that cross-species infections may be possible. Ancestral state reconstructions and sequence distance comparisons associated HBV with humans, whereas primate hepadnaviruses as a whole were projected to NHP ancestors. Co-phylogenetic analyses yielded evidence for co-speciation of hepadnaviruses and New World NHP. Bayesian hypothesis testing yielded strong support for an association of the HBV stem lineage with hominoid ancestors. Neither CMHBV nor WMHBV was likely the ancestor of the divergent human HBV genotypes F/H found in American natives. CONCLUSIONS: Our data suggest ancestral co-speciation of hepadnaviruses and NHP, and an Old World origin of the divergent HBV genotypes F/H. The identification of a novel primate hepadnavirus offers new perspectives for urgently needed animal models of chronic hepatitis B. LAY SUMMARY: The origins of HBV are unclear. The new orthohepadnavirus species from Brazilian capuchin monkeys resembled HBV in elicited infection patterns and could infect human liver cells using the same receptor as HBV. Evolutionary analyses suggested that primate HBV-related viruses might have emerged in African ancestors of New World monkeys millions of years ago. HBV was associated with hominoid primates, including humans and apes, suggesting evolutionary origins of HBV before the formation of modern humans. HBV genotypes found in American natives were divergent from those found in American monkeys, and likely introduced along prehistoric human migration. Our results elucidate the evolutionary origins and dispersal of primate HBV, identify a new orthohepadnavirus reservoir, and enable new perspectives for animal models of hepatitis B.


Assuntos
Cebus/virologia , Evolução Molecular , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Orthohepadnavirus/genética , Orthohepadnavirus/isolamento & purificação , Sequência de Aminoácidos , Animais , Teorema de Bayes , Brasil , Especiação Genética , Genoma Viral , Hepatite B/veterinária , Hepatite B/virologia , Antígenos da Hepatite B/química , Antígenos da Hepatite B/genética , Antígenos da Hepatite B/imunologia , Vírus da Hepatite B/classificação , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Modelos Genéticos , Doenças dos Macacos/virologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/fisiologia , Orthohepadnavirus/classificação , Filogenia , Primatas/virologia , Receptores Virais/fisiologia , Simportadores/fisiologia , Internalização do Vírus
16.
Sci Rep ; 7(1): 7120, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28769080

RESUMO

Hepadnaviruses, including human hepatitis B virus (HBV), replicate their tiny DNA genomes by protein-primed reverse transcription of a pregenomic (pg) RNA. Replication initiation as well as pgRNA encapsidation depend on the interaction of the viral polymerase, P protein, with the ε RNA element, featuring a lower and an upper stem, a central bulge, and an apical loop. The bulge, somehow assisted by the loop, acts as template for a P protein-linked DNA oligo that primes full-length minus-strand DNA synthesis. Phylogenetic conservation and earlier mutational studies suggested the highly based-paired ε structure as crucial for productive interaction with P protein. Using the tractable duck HBV (DHBV) model we here interrogated the entire apical DHBV ε (Dε) half for sequence- and structure-dependent determinants of in vitro priming activity, replication, and, in part, in vivo infectivity. This revealed single-strandedness of the bulge, a following G residue plus the loop subsequence GUUGU as the few key determinants for priming and initiation site selection; unexpectedly, they functioned independently of a specific structure context. These data provide new mechanistic insights into avihepadnaviral replication initiation, and they imply a new concept towards a feasible in vitro priming system for human HBV.


Assuntos
Pareamento de Bases , Vírus da Hepatite B do Pato/genética , Sequências Repetidas Invertidas , Motivos de Nucleotídeos , RNA Viral/química , RNA Viral/genética , Sítio de Iniciação de Transcrição , Animais , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Galinhas , Regulação Viral da Expressão Gênica , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , RNA , Replicação Viral
17.
Viruses ; 9(5)2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28531167

RESUMO

Chronic hepatitis B virus (HBV) infection puts more than 250 million people at a greatly increased risk to develop end-stage liver disease. Like all hepadnaviruses, HBV replicates via protein-primed reverse transcription of a pregenomic (pg) RNA, yielding an unusually structured, viral polymerase-linked relaxed-circular (RC) DNA as genome in infectious particles. Upon infection, RC-DNA is converted into nuclear covalently closed circular (ccc) DNA. Associating with cellular proteins into an episomal minichromosome, cccDNA acts as template for new viral RNAs, ensuring formation of progeny virions. Hence, cccDNA represents the viral persistence reservoir that is not directly targeted by current anti-HBV therapeutics. Eliminating cccDNA will thus be at the heart of a cure for chronic hepatitis B. The low production of HBV cccDNA in most experimental models and the associated problems in reliable cccDNA quantitation have long hampered a deeper understanding of cccDNA molecular biology. Recent advancements including cccDNA-dependent cell culture systems have begun to identify select host DNA repair enzymes that HBV usurps for RC-DNA to cccDNA conversion. While this list is bound to grow, it may represent just one facet of a broader interaction with the cellular DNA damage response (DDR), a network of pathways that sense and repair aberrant DNA structures and in the process profoundly affect the cell cycle, up to inducing cell death if repair fails. Given the divergent interactions between other viruses and the DDR it will be intriguing to see how HBV copes with this multipronged host system.


Assuntos
Dano ao DNA/fisiologia , DNA Circular/fisiologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/virologia , Interações Hospedeiro-Parasita/fisiologia , Ciclo Celular , Morte Celular , Reparo do DNA , Enzimas Reparadoras do DNA , DNA Viral/análise , Produtos do Gene pol/genética , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/genética , Hepatite B Crônica/imunologia , RNA Viral , Vírion/genética , Replicação Viral
18.
Antiviral Res ; 134: 117-129, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27591142

RESUMO

Chronic infection with hepatitis B virus (HBV), a small DNA virus that replicates by reverse transcription of a pregenomic (pg) RNA precursor, greatly increases the risk for terminal liver disease. RNA interference (RNAi) based therapy approaches have shown potential to overcome the limited efficacy of current treatments. However, synthetic siRNAs as well as small hairpin (sh) RNAs expressed from non-integrating vectors require repeated applications; integrating vectors suffer from safety concerns. We pursue a new concept by which HBV itself is engineered into a conditionally replicating, wild-type HBV dependent anti-HBV shRNA vector. Beyond sharing HBV's hepatocyte tropism, such a vector would be self-renewing, but only as long as wild-type HBV is present. Here, we realized several important aspects of this concept. We identified two distinct regions in the 3.2 kb HBV genome which tolerate replacement by shRNA expression cassettes without compromising reverse transcription when complemented in vitro by HBV helper constructs or by wild-type HBV; a representative HBV shRNA vector was infectious in cell culture. The vector-encoded shRNAs were active, including on HBV as target. A dual anti-HBV shRNA vector delivered into HBV transgenic mice, which are not susceptible to HBV infection, by a chimeric adenovirus-HBV shuttle reduced serum hepatitis B surface antigen (HBsAg) up to ∼4-fold, and virus particles up to ∼20-fold. Importantly, a fraction of the circulating particles contained vector-derived DNA, indicating successful complementation in vivo. These data encourage further investigations to prove antiviral efficacy and the predicted self-limiting vector spread in a small animal HBV infection model.


Assuntos
Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Interferência de RNA , RNA Interferente Pequeno/fisiologia , Replicação Viral , Adenoviridae/genética , Animais , Animais Geneticamente Modificados , Replicação do DNA , DNA Viral/genética , Teste de Complementação Genética , Vetores Genéticos , Genoma Viral , Antígenos de Superfície da Hepatite B/sangue , Camundongos , Camundongos Transgênicos , RNA Interferente Pequeno/genética , RNA Viral/genética
19.
Hepatology ; 63(1): 35-48, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26224662

RESUMO

UNLABELLED: Chronic hepatitis B and D infections are major causes of liver disease and hepatocellular carcinoma worldwide. Efficient therapeutic approaches for cure are absent. Sharing the same envelope proteins, hepatitis B virus and hepatitis delta virus use the sodium/taurocholate cotransporting polypeptide (a bile acid transporter) as a receptor to enter hepatocytes. However, the detailed mechanisms of the viral entry process are still poorly understood. Here, we established a high-throughput infectious cell culture model enabling functional genomics of hepatitis delta virus entry and infection. Using a targeted RNA interference entry screen, we identified glypican 5 as a common host cell entry factor for hepatitis B and delta viruses. CONCLUSION: These findings advance our understanding of virus cell entry and open new avenues for curative therapies. As glypicans have been shown to play a role in the control of cell division and growth regulation, virus-glypican 5 interactions may also play a role in the pathogenesis of virus-induced liver disease and cancer.


Assuntos
Glipicanas/fisiologia , Vírus da Hepatite B/patogenicidade , Vírus Delta da Hepatite/patogenicidade , RNA não Traduzido/fisiologia , Internalização do Vírus , Células Cultivadas , Humanos
20.
PLoS One ; 10(12): e0145746, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26699621

RESUMO

Hepatitis B virus (HBV) causes acute and chronic hepatitis B (CHB). Due to its error-prone replication via reverse transcription, HBV can rapidly evolve variants that escape vaccination and/or become resistant to CHB treatment with nucleoside/nucleotide analogs (NAs). This is particularly problematic for the first generation NAs lamivudine and adefovir. Though now superseded by more potent NAs, both are still widely used. Furthermore, resistance against the older NAs can contribute to cross-resistance against more advanced NAs. For lack of feasible HBV infection systems, the biology of such variants is not well understood. From the recent discovery of Na+-taurocholate cotransporting polypeptide (NTCP) as an HBV receptor new in vitro infection systems are emerging, yet access to the required large amounts of virions, in particular variants, remains a limiting factor. Stably HBV producing cell lines address both issues by allowing to study intracellular viral replication and as a permanent source of defined virions. Accordingly, we generated a panel of new tetracycline regulated TetOFF HepG2 hepatoma cell lines which produce six lamivudine and adefovir resistance-associated and two vaccine escape variants of HBV as well as the model virus woolly monkey HBV (WMHBV). The cell line-borne viruses reproduced the expected NA resistance profiles and all were equally sensitive against a non-NA drug. The new cell lines should be valuable to investigate under standardized conditions HBV resistance and cross-resistance. With titers of secreted virions reaching >3 x 10(7) viral genome equivalents per ml they should also facilitate exploitation of the new in vitro infection systems.


Assuntos
Antivirais/farmacologia , Carcinoma Hepatocelular/virologia , Farmacorresistência Viral , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/crescimento & desenvolvimento , Hepatite B Crônica/virologia , Replicação Viral/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Vacinas contra Hepatite B/administração & dosagem , Hepatite B Crônica/tratamento farmacológico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/virologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA