Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Adv ; 10(35): eadj3010, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213358

RESUMO

We present an in silico approach for drug discovery, dubbed connectivity enhanced structure activity relationship (ceSAR). Building on the landmark LINCS library of transcriptional signatures of drug-like molecules and gene knockdowns, ceSAR combines cheminformatic techniques with signature concordance analysis to connect small molecules and their targets and further assess their biophysical compatibility using molecular docking. Candidate compounds are first ranked in a target structure-independent manner, using chemical similarity to LINCS analogs that exhibit transcriptomic concordance with a target gene knockdown. Top candidates are subsequently rescored using docking simulations and machine learning-based consensus of the two approaches. Using extensive benchmarking, we show that ceSAR greatly reduces false-positive rates, while cutting run times by multiple orders of magnitude and further democratizing drug discovery pipelines. We further demonstrate the utility of ceSAR by identifying and experimentally validating inhibitors of BCL2A1, an important antiapoptotic target in melanoma and preterm birth-associated inflammation.


Assuntos
Descoberta de Drogas , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos/métodos , Humanos , Transcriptoma , Aprendizado de Máquina , Relação Estrutura-Atividade
2.
PLoS One ; 18(2): e0281876, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36809290

RESUMO

Neurofibromatosis Type 2 is an inherited disease characterized by Schwann cell tumors of cranial and peripheral nerves. The NF2 gene encodes Merlin, a member of the ERM family consisting of an N-terminal FERM domain, a central α-helical region, and a C-terminal domain. Changes in the intermolecular FERM-CTD interaction allow Merlin to transition between an open, FERM accessible conformation and a closed, FERM-inaccessible conformation, modulating Merlin activity. Merlin has been shown to dimerize, but the regulation and function Merlin dimerization is not clear. We used a nanobody based binding assay to show that Merlin dimerizes via a FERM-FERM interaction, orientated with each C-terminus close to each other. Patient derived and structural mutants show that dimerization controls interactions with specific binding partners, including HIPPO pathway components, and correlates with tumor suppressor activity. Gel filtration experiments showed that dimerization occurs after a PIP2 mediated transition from closed to open conformation monomers. This process requires the first 18 amino acids of the FERM domain and is inhibited by phosphorylation at serine 518. The discovery that active, open conformation Merlin is a dimer represents a new paradigm for Merlin function with implications for the development of therapies designed to compensate for Merlin loss.


Assuntos
Genes da Neurofibromatose 2 , Neurofibromina 2 , Humanos , Dimerização , Genes Supressores de Tumor , Neurofibromina 2/genética , Estrutura Terciária de Proteína , Multimerização Proteica
3.
Leukemia ; 36(3): 637-647, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34711926

RESUMO

Aberrant RHO guanine nucleotide exchange factor (RhoGEF) activation is chief mechanism driving abnormal activation of their GTPase targets in transformation and tumorigenesis. Consequently, a small-molecule inhibitor of RhoGEF can make an anti-cancer drug. We used cellular, mouse, and humanized models of RAC-dependent BCR-ABL1-driven and Ph-like acute lymphoblastic leukemia to identify VAV3, a tyrosine phosphorylation-dependent RacGEF, as the target of the small molecule IODVA1. We show that through binding to VAV3, IODVA1 inhibits RAC activation and signaling and increases pro-apoptotic activity in BCR-ABL1-transformed cells. Consistent with this mechanism of action, cellular and animal models of BCR-ABL1-induced leukemia in Vav3-null background do not respond to IODVA1. By durably decreasing in vivo RAC signaling, IODVA1 eradicates leukemic propagating activity of TKI-resistant BCR-ABL1(T315I) B-ALL cells after treatment withdrawal. Importantly, IODVA1 suppresses the leukemic burden in the treatment refractory pediatric Ph+ and TKI-resistant Ph+ B-ALL patient-derived xenograft models better than standard-of-care dasatinib or ponatinib and provides a more durable response after treatment withdrawal. Pediatric leukemia samples with diverse genetic lesions show high sensitivity to IODVA1 ex vivo and this sensitivity is VAV3 dependent. IODVA1 thus spearheads a novel class of drugs that inhibits a RacGEF and holds promise as an anti-tumor therapy.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-vav/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-vav/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Células Tumorais Cultivadas
4.
Am J Hum Genet ; 107(6): 1149-1156, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33186543

RESUMO

The Congenital Dyserythropoietic Anemia (CDA) Registry was established with the goal to facilitate investigations of natural history, biology, and molecular pathogenetic mechanisms of CDA. Three unrelated individuals enrolled in the registry had a syndrome characterized by CDA and severe neurodevelopmental delay. They were found to have missense mutations in VPS4A, a gene coding for an ATPase that regulates the ESCRT-III machinery in a variety of cellular processes including cell division, endosomal vesicle trafficking, and viral budding. Bone marrow studies showed binucleated erythroblasts and erythroblasts with cytoplasmic bridges indicating abnormal cytokinesis and abscission. Circulating red blood cells were found to retain transferrin receptor (CD71) in their membrane, demonstrating that VPS4A is critical for normal reticulocyte maturation. Using proband-derived induced pluripotent stem cells (iPSCs), we have successfully modeled the hematologic aspects of this syndrome in vitro, recapitulating their dyserythropoietic phenotype. Our findings demonstrate that VPS4A mutations cause cytokinesis and trafficking defects leading to a human disease with detrimental effects to erythropoiesis and neurodevelopment.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Anemia Diseritropoética Congênita/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , ATPases Vacuolares Próton-Translocadoras/genética , Adenosina Trifosfatases/metabolismo , Anemia Diseritropoética Congênita/patologia , Medula Óssea/patologia , Células da Medula Óssea/metabolismo , Criança , Pré-Escolar , Citocinese , Endossomos/metabolismo , Eritroblastos/metabolismo , Eritrócitos/citologia , Eritropoese , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Transtornos do Neurodesenvolvimento/metabolismo , Fenótipo , Transporte Proteico , Reticulócitos/citologia
5.
PLoS One ; 15(3): e0229801, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32163428

RESUMO

We report the synthesis and preliminary characterization of IODVA1, a potent small molecule that is active in xenograft mouse models of Ras-driven lung and breast cancers. In an effort to inhibit oncogenic Ras signaling, we combined in silico screening with inhibition of proliferation and colony formation of Ras-driven cells. NSC124205 fulfilled all criteria. HPLC analysis revealed that NSC124205 was a mixture of at least three compounds, from which IODVA1 was determined to be the active component. IODVA1 decreased 2D and 3D cell proliferation, cell spreading and ruffle and lamellipodia formation through downregulation of Rac activity. IODVA1 significantly impaired xenograft tumor growth of Ras-driven cancer cells with no observable toxicity. Immuno-histochemistry analysis of tumor sections suggests that cell death occurs by increased apoptosis. Our data suggest that IODVA1 targets Rac signaling to induce death of Ras-transformed cells. Therefore, IODVA1 holds promise as an anti-tumor therapeutic agent.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas ras/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Benzimidazóis/síntese química , Benzimidazóis/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Células NIH 3T3 , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Leukemia ; 33(3): 749-761, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30254339

RESUMO

Mobilization of hematopoietic stem cells (HSCs) from bone marrow (BM) to peripheral blood (PB) by cytokine granulocyte colony-stimulating factor (G-CSF) or the chemical antagonist of CXCR4, AMD3100, is important in the treatment of blood diseases. Due to clinical conditions of each application, there is a need for continued improvement of HSC mobilization regimens. Previous studies have shown that genetic ablation of the Rho GTPase Cdc42 in HSCs results in their mobilization without affecting survival. Here we rationally identified a Cdc42 activity-specific inhibitor (CASIN) that can bind to Cdc42 with submicromolar affinity and competitively interfere with guanine nucleotide exchange activity. CASIN inhibits intracellular Cdc42 activity specifically and transiently to induce murine hematopoietic stem/progenitor cell egress from the BM by suppressing actin polymerization, adhesion, and directional migration of stem/progenitor cells, conferring Cdc42 knockout phenotypes. We further show that, although, CASIN administration to mice mobilizes similar number of phenotypic HSCs as AMD3100, it produces HSCs with better long-term reconstitution potential than that by AMD3100. Our work validates a specific small molecule inhibitor for Cdc42, and demonstrates that signaling molecules downstream of cytokines and chemokines, such as Cdc42, constitute a useful target for long-term stem cell mobilization.


Assuntos
Células-Tronco Hematopoéticas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Animais , Benzilaminas , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Movimento Celular/efeitos dos fármacos , Ciclamos , Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Mobilização de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Compostos Heterocíclicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
7.
JCI Insight ; 2(3): e89473, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28194436

RESUMO

Many patients with histiocytic disorders such as Langerhans cell histiocytosis (LCH) or Erdheim-Chester disease (ECD) have treatment-refractory disease or suffer recurrences. Recent findings of gene mutations in histiocytoses have generated options for targeted therapies. We sought to determine the utility of prospective sequencing of select genes to further characterize mutations and identify targeted therapies for patients with histiocytoses. Biopsies of 72 patients with a variety of histiocytoses underwent comprehensive genomic profiling with targeted DNA and RNA sequencing. Fifteen patients (21%) carried the known BRAF V600E mutation, and 11 patients (15%) carried various mutations in MAP2K1, which we confirm induce constitutive activation of extracellular signal-regulated kinase (ERK) and were sensitive to inhibitors of mitogen-activated protein kinase kinase (MEK, the product of MAP2K1). We also identified recurring ALK rearrangements, and 4 LCH patients with an uncommon in-frame deletion in BRAF (N486_P490del or N486_T491>K), resulting in constitutive activation of ERK with resistance to V600E-specific inhibitors. We subsequently describe clinical cases where patients with aggressive multisystem LCH experience dramatic and sustained responses to monotherapy with either dabrafenib or trametinib. These findings support our conclusion that comprehensive genomic profiling should be regularly applied to these disorders at diagnosis, and can positively impact clinical care.


Assuntos
Quinase do Linfoma Anaplásico/genética , Histiocitose/tratamento farmacológico , MAP Quinase Quinase 1/genética , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas B-raf/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Células 3T3 , Adulto , Animais , Resistencia a Medicamentos Antineoplásicos , Feminino , Histiocitose/genética , Histiocitose/patologia , Humanos , Imidazóis/administração & dosagem , Imidazóis/uso terapêutico , Lactente , Masculino , Camundongos , Mutação , Oximas/administração & dosagem , Oximas/uso terapêutico , Estudos Prospectivos , Inibidores de Proteínas Quinases/uso terapêutico , Piridonas/administração & dosagem , Piridonas/uso terapêutico , Pirimidinonas/administração & dosagem , Pirimidinonas/uso terapêutico , Resultado do Tratamento , Adulto Jovem
8.
Cell Cycle ; 12(1): 51-66, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23255114

RESUMO

Stem cells are essential for development and tissue maintenance and display molecular markers and functions distinct from those of differentiated cell types in a given tissue. Malignant cells that exhibit stem cell-like activities have been detected in many types of cancers and have been implicated in cancer recurrence and drug resistance. Normal stem cells and cancer stem cells have striking commonalities, including shared cell surface markers and signal transduction pathways responsible for regulating quiescence vs. proliferation, self-renewal, pluripotency and differentiation. As the search continues for markers that distinguish between stem cells, progenitor cells and cancer stem cells, growing evidence suggests that a unique chromatin-associated protein called DEK may confer stem cell-like qualities. Here, we briefly describe current knowledge regarding stem and progenitor cells. We then focus on new findings that implicate DEK as a regulator of stem and progenitor cell qualities, potentially through its unusual functions in the regulation of local or global chromatin organization.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Oncogênicas/metabolismo , Cromatina/química , Reparo do DNA , Humanos , Proteínas de Ligação a Poli-ADP-Ribose , Proteína Supressora de Tumor p53/metabolismo
9.
Curr Top Med Chem ; 6(11): 1109-16, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16842149

RESUMO

Rho GTPases of the Ras superfamily are involved in the regulation of multiple cell functions and have been implicated in the pathology of various human diseases including cancer. They are attractive drug targets in future targeted therapy. A wealth of structure-function information made available by high resolution structures and mutagenesis studies has laid out the foundation for the derivation of a mechanism-based targeting strategy. Here we describe the rational design and characterizations of a first generation Rac-specific small molecule inhibitor. Based on the structure-function information of Rac interaction with GEFs, in a computer based Virtual Screening we have identified NSC23766, a highly soluble and membrane permeable compound, as a specific inhibitor of a subset of GEF binding to Rac and therefore Rac activation. In fibroblast cells NSC23766 inhibited Rac1 GTP-loading without affecting Cdc42 or RhoA activity and suppressed the Rac-GEF, Tiam1, and oncogenic Ras induced cell growth and transformation. NSC23766 also potently inhibited the prostate PC-3 cancer cell proliferation and invasion induced by Rac hyperactivation. Intraperitoneal administration of NSC23766 to laboratory mice resulted in effective Rac GTPase suppression and hematopoietic stem cell mobilization from the bone marrow to the peripheral blood, similar to the effects of genetically targeted disruption of Rac GTPases in the animals. A co-crystal structure of NSC23766 bound to Rac1 provided further insight for future medicinal chemistry modification and improvement of this lead Rac-specific inhibitor. Thus, structure-function based rational design may represent a new avenue for generating lead small molecule inhibitors of Ras superfamily GTPases that are useful for modulating pathological conditions in which the small GTPase deregulation may play a role.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Animais , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
10.
Structure ; 14(3): 427-36, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16531227

RESUMO

The flexibility of the conserved 57DTAGQ61 motif is essential for Ras proper cycling in response to growth factors. Here, we increase the flexibility of the 57DTAGQ61 motif by mutating Gln61 to Gly. The crystal structure of the RasQ61G mutant reveals a new conformation of switch 2 that bears remarkable structural homology to an intermediate for GTP hydrolysis revealed by targeted molecular dynamics simulations. The mutation increased retention of GTP and inhibited Ras binding to the catalytic site, but not to the distal site of Sos. Most importantly, the thermodynamics of RafRBD binding to Ras are altered even though the structure of switch 1 is not affected by the mutation. Our results suggest that interplay and transmission of structural information between the switch regions are important factors for Ras function. They propose that initiation of GTP hydrolysis sets off the separation of the Ras/effector complex even before the GDP conformation is reached.


Assuntos
Glucosefosfato Desidrogenase/metabolismo , Guanosina Trifosfato/química , Proteína Oncogênica p21(ras)/genética , Cristalografia por Raios X , Glucosefosfato Desidrogenase/química , Guanosina Trifosfato/metabolismo , Hidrólise , Magnésio/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Nucleotídeos/química , Proteína Oncogênica p21(ras)/química , Proteína Oncogênica p21(ras)/metabolismo , Ligação Proteica , Conformação Proteica , Resposta SOS em Genética/genética , Transdução de Sinais , Quinases raf/química , Quinases raf/metabolismo
11.
J Biol Chem ; 280(27): 25697-705, 2005 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15878843

RESUMO

Substituting alanine for glycine at position 60 in v-H-Ras generated a dominant negative mutant that completely abolished the ability of v-H-Ras to transform NIH 3T3 cells and to induce germinal vesicle breakdown in Xenopus oocytes. The crystal structure of the GppNp-bound form of RasG60A unexpectedly shows that the switch regions adopt an open conformation reminiscent of the structure of the nucleotide-free form of Ras in complex with Sos. Critical residues that normally stabilize the guanine nucleotide and the Mg(2+) ion have moved considerably. Sos binds to RasG60A but is unable to catalyze nucleotide exchange. Our data suggest that the dominant negative effect observed for RasG60A.GTP could result from the sequestering of Sos in a non-productive Ras-GTP-guanine nucleotide exchange factor ternary complex.


Assuntos
Substituição de Aminoácidos , Proteína Oncogênica p21(ras)/química , Proteína Oncogênica p21(ras)/genética , Alanina/genética , Animais , Células COS , Chlorocebus aethiops , Cristalografia , Glicina/genética , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Camundongos , Células NIH 3T3 , Proteína Oncogênica p21(ras)/metabolismo , Oócitos , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA