Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
BMC Vet Res ; 20(1): 391, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232745

RESUMO

BACKGROUND: Plasma-activated water (PAW) is an innovative promising technology which could be applied to improve poultry health. The current study investigated the effects of drinking water supply with PAW on quail behaviour, performance, biochemical parameters, carcass quality, intestinal microbial populations, and internal organs histopathology. A total of 54 twenty-one-day-old Japanese quail chicks were randomly allotted to three treatments provided with PAW at doses 0, 1 ml (PAW-1), and 2 ml (PAW-2) per one litter drinking water. Each treatment contained 6 replicates (3 birds/ cage; one male and two females). RESULTS: The results clarified that there were no significant (P > 0.05) changes in behaviour, and performance. For the biochemical indicators, the PAW-1 group showed significantly higher serum H2O2, total protein and globulin levels compared with the other groups (P = 0.015, < 0.001, and 0.019; respectively). PAW groups had significantly lower serum creatinine and urea levels than the control (P = 0.003). For the carcass quality, the internal organs relative weight between different treatments was not changed. In contrast, there was a significant increase in the meat colour, taste, and overall acceptance scores in PAW groups compared with the control one (P = 0.013, 0.001, and < 0.001; respectively). For the intestinal microbial population, lactobacilli count was significantly higher in PAW-2 compared with the control group (P = 0.014), while there were no changes in the total bacterial count between different treatment groups. Moreover, mild histological changes were recorded in the intestine, liver, and spleen of PAW groups especially PAW-2 compared with the control one. CONCLUSIONS: PAW offered benefits, such as reducing creatine and urea levels, improving meat characteristics, and increasing lactobacilli count, all of which are crucial for sustainable quail farming. Therefore, further research is needed.


Assuntos
Coturnix , Animais , Masculino , Feminino , Comportamento Animal , Carne/análise , Carne/normas , Água Potável/microbiologia , Água Potável/química , Microbioma Gastrointestinal
2.
Sci Rep ; 14(1): 17645, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085250

RESUMO

The Middle East has witnessed a greater spread of infectious Dengue viruses, with serotype 2 (DENV-2) being the most prevalent form. Through this work, multi-epitope peptide vaccines against DENV-2 that target E and nonstructural (NS1) proteins were generated through an immunoinformatic approach. MHC class I and II and LBL epitopes among NS1 and envelope E proteins sequences were predicted and their antigenicity, toxicity, and allergenicity were investigated. Studies of the population coverage denoted the high prevalence of NS1 and envelope-E epitopes among different countries where DENV-2 endemic. Further, both the CTL and HTL epitopes retrieved from NS1 epitopes exhibited high conservancies' percentages with other DENV serotypes (1, 3, and 4). Three vaccine constructs were created and the expected immune responses for the constructs were estimated using C-IMMSIM and HADDOCK (against TLR 2,3,4,5, and 7). Molecular dynamics simulation for vaccine construct 2 with TLR4 denoted high binding affinity and stability of the construct with the receptor which might foretell favorable in vivo interaction and immune responses.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Sorogrupo , Vacinas de Subunidades Antigênicas , Proteínas não Estruturais Virais , Vírus da Dengue/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas contra Dengue/imunologia , Humanos , Dengue/prevenção & controle , Dengue/imunologia , Dengue/virologia , Proteínas não Estruturais Virais/imunologia , Biologia Computacional/métodos , Epitopos de Linfócito T/imunologia , Proteínas do Envelope Viral/imunologia , Simulação de Dinâmica Molecular , Epitopos/imunologia , Epitopos/química , Vacinas de Subunidades Proteicas
3.
Heliyon ; 10(11): e31642, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912514

RESUMO

Functional bioactive ingredients isolated from microalgae as sustainable sources have become a new subject of pharmacology and functional foods. Thus, the work aims to produce crude phycocyanin (C-PC), define it, and investigate its pharmacological effects before warping it in a nanophytosome. Subsequently, the physicochemical properties of nanoparticles were evaluated. Both free and nanophytosomes of C-PC were incorporated into cow milk fermented with the probiotic Lactobacillus rhamnosus KU985435 to make functional yoghurt and the stability of C-PC of both phytosomes was assessed. The amino acid content of C-PC revealed the presence of eight of nine essential amino acids and eight of eleven non-essential amino acids. C-PC has a medium molecular weight (82.992 kDa). Some pharmacological effects like reducing inflammation (98.76 % ± 0.065), fighting free radicals (99.12 % ± 0.027), and being able to inhibit the human coronavirus 229 E with a selective index of 27.9 were observed. The maximum viral inhibitory activity was detected during the adsorption stage. Anti-human liver and colon carcinomas that exceeded Doxorubicin with very low cytotoxicity against normal cell lines were detected. C-PC is an unstable protein that could be degraded in the yoghurt during storage. Therefore, phytosome encapsulation can effectively stabilize C-PC (particle size 44.50 ± 12 nm and zeta-potential -32.4 ± 5 mV) and protect it from the acidic environment of the yoghurt. The produced yoghurt showed the desired physicochemical and functional properties and overall acceptance. The results prove that C-PC from spirulina algae is a renewable source of dyes. The encapsulation process using phytosomes gave it high stability against environmental influences, and therefore, it can be applied in the food and pharmaceutical industries in the future.

4.
J Saudi Heart Assoc ; 36(2): 70-78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919507

RESUMO

Background: Incidence and outcomes of acute kidney injury (AKI) among neonates who underwent open-heart surgery are not well highlighted in the literature. We aim to assess the incidence, risk factors, and outcome of AKI among neonates undergoing open-heart surgery. Methods: This is a retrospective cohort study between 2016 and 2021 for all neonates requiring open heart surgery. The cases were divided into 2 groups: the AKI (index) group and the non-AKI (control) group. The two groups were statistically compared for risk factors, needs for dialysis, and outcomes. Results: 100 patients fulfilled the inclusion criteria. Among them, 74 (74%) developed AKI, including 41 (55%), 15 (21%), and 18 (24%) patients in KDIGO stages 1, 2, and 3, respectively. Multivariate analysis comparing both groups demonstrated that low pre-operative creatinine (p = 0.01), prolonged bypass time (p = 0.0004) and high vasoactive inotropic score (VIS), (p = 0.0008) were risk factors for developing AKI post-operatively. Furthermore, in the AKI group, 17 (23%) neonates required renal replacement therapy in the form of peritoneal dialysis. The length of stay was higher in the AKI index group (p = 0.015). Patients who had AKI recovered their kidney function at discharge. There was no difference in mortality between both groups. Conclusion: The AKI occurred in 74% of neonates undergoing open-heart surgery, with 23% of them needing peritoneal dialysis. Low pre-operative creatinine, high VIS score, and prolonged bypass time are potential risk factors for AKI development after neonatal open-heart surgery. AKI may lead to prolonged hospitalization, though most affected patients recovered their normal kidney function at discharge.

6.
Int J Biol Macromol ; 255: 128234, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981287

RESUMO

In this work, we developed five solid adsorbents such as calcium alginate beads (CG), Araucaria gum (AR) extracted from Araucaria heterophylla tree by chemical precipitation procedures, and Araucaria gum/calcium alginate composite beads (CR21, CR12, and CR11) prepared with different calcium alginate: Araucaria gum ratios (2:1, 1:2, and 1:1, respectively). The synthesized solid adsorbents were characterized utilizing TGA, XRD, nitrogen adsorption/desorption analysis, ATR-FTIR, pHPZC, swelling ratio, SEM, and TEM. Through the batch and column adsorption strategies, we evaluated the effect of adsorbent dose, pH, initial Pb (II) concentration, shaking time, bed height, and flow rate. The data of batch technique indicated that CR11 demonstrated a maximum batch adsorption capacity of 149.95 mg/g at 25 °C. Lead ions adsorption was well fitted by pseudo-second order and Elovich according to kinetic studies, in addition to Langmuir and Temkin models based on adsorption isotherm studies onto all the samples. Thermodynamic investigation showed that Pb (II) adsorption process is an endothermic, physical, and spontaneous process. The highest column adsorption capacity (161.1 mg/g) was achieved by CR11 at a bed height of 3 cm, flow rate of 10 mL/min, and initial Pb+2 concentration of 225 mg/L with 68 min as breakthrough time and 180 min as exhaustion time. Yoon-Nelson and Thomas models applied well the breakthrough curves of Pb (II) column adsorption. The maximum column adsorption capacity was decreased by 11.4 % after four column adsorption/desorption processes. Our results revealed that CR11 had an excellent adsorption capacity, fast kinetics, and good selectivity, emphasizing its potential for its applications in water treatment.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Alginatos/química , Cinética , Chumbo , Poluentes Químicos da Água/química , Íons , Purificação da Água/métodos , Concentração de Íons de Hidrogênio
7.
J Biomol Struct Dyn ; : 1-18, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38109183

RESUMO

Yellow fever is a flavivirus having plus-sensed RNA which encodes a single polyprotein. Host proteases cut this polyprotein into seven nonstructural proteins including a vital NS3 protein. The present study aims to identify the most effective inhibitor against the helicase (NS3) using different advanced ligand and structure-based computational studies. A set of 300 ligands was selected against helicase by chemical structural similarity model, which are similar to S-adenosyl-l-cysteine using infiniSee. This tool screens billions of compounds through a similarity search from in-built chemical spaces (CHEMriya, Galaxi, KnowledgeSpace and REALSpace). The pharmacophore was designed from ligands in the library that showed same features. According to the sequence of ligands, six compounds (29, 87, 99, 116, 148, and 208) were taken for pharmacophore designing against helicase protein. Subsequently, compounds from the library which showed the best pharmacophore shared-features were docked using FlexX functionality of SeeSAR and their optibrium properties were analyzed. Afterward, their ADME was improved by replacing the unfavorable fragments, which resulted in the generation of new compounds. The selected best compounds (301, 302, 303 and 304) were docked using SeeSAR and their pharmacokinetics and toxicological properties were evaluated using SwissADME. The optimal inhibitor for yellow fever helicase was 2-amino-N-(4-(dimethylamino)thiazol-2-yl)-4-methyloxazole-5-carboxamide (302), which exhibits promising potential for drug development.Communicated by Ramaswamy H. Sarma.

8.
Saudi Pharm J ; 31(11): 101823, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37965293

RESUMO

Thymidine phosphorylase (TP) is an angiogenic enzyme. It is crucial for the development, invasion and metastasis of tumors as well as angiogenesis. In our current research, we examine how structurally changing bis-thiadiazole bearing bis-schiff bases affects their ability to inhibit TP. Through the oxidative cyclization of pyridine-based bis-thiosemicarbazone with iodine, a series of fourteen analogs of bis-thiadiazole-based bis-imines with pyridine moiety were developed. Newly synthesized scaffolds were assessed in vitro for their thymidine phosphorylase inhibitory potential and showed moderate to good inhibition profile. Eleven scaffolds such as 4a-4d,4f-4 h and 4j-4 m were discovered to be more effective than standard drug at inhibiting the thymidine phosphorylase enzyme with IC50 values of 1.16 ± 1.20, 1.77 ± 1.10, 2.48 ± 1.30, 12.54 ± 1.60, 14.63 ± 1.70, 15.53 ± 1.80, 17.47 ± 1.70, 18.98 ± 1.70, 19.53 ± 1.50, 22.73 ± 2.40 and 24.87 ± 2.80 respectively, while remaining three analogs such as 4n, 4i and 4ewere found to be more potent, but they were less potent than the standard drug. All analogs underwent SAR studies based on the pattern of substitutions around the aryl part of the bis-thiadiazole skeleton. The most active analogs in the synthesized series were then molecular docking study performed to investigate their interactions of active part of enzyme. The results showed that remarkable interactions were exhibited by these analogs with the targeted enzymes active sites. Furthermore, to confirm the structure of synthesized analogs by employing spectroscopic tools such as HREI-MS and NMR.

9.
Front Cell Infect Microbiol ; 13: 1224778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662011

RESUMO

Green synthesis of NPs has gained extensive acceptance as they are reliable, eco-friendly, sustainable, and stable. Chemically synthesized NPs cause lung inflammation, heart problems, liver dysfunction, immune suppression, organ accumulation, and altered metabolism, leading to organ-specific toxicity. NPs synthesized from plants and microbes are biologically safe and cost-effective. These microbes and plant sources can consume and accumulate inorganic metal ions from their adjacent niches, thus synthesizing extracellular and intracellular NPs. These inherent characteristics of biological cells to process and modify inorganic metal ions into NPs have helped explore an area of biochemical analysis. Biological entities or their extracts used in NPs include algae, bacteria, fungi, actinomycetes, viruses, yeasts, and plants, with varying capabilities through the bioreduction of metallic NPs. These biosynthesized NPs have a wide range of pharmaceutical applications, such as tissue engineering, detection of pathogens or proteins, antimicrobial agents, anticancer mediators, vehicles for drug delivery, formulations for functional foods, and identification of pathogens, which can contribute to translational research in medical applications. NPs have various applications in the food and drug packaging industry, agriculture, and environmental remediation.


Assuntos
Actinobacteria , Anti-Infecciosos , Nanopartículas , Anti-Infecciosos/farmacologia , Agricultura , Sistemas de Liberação de Medicamentos
10.
RSC Adv ; 13(39): 27415-27422, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37711371

RESUMO

Thin films of binary nickel sulphide (NiS) and zinc-doped ternary nickel sulphides (Ni1-xZnxS, where x = 0-1) were effectively produced by the chemical bath deposition method, and their potential use in photovoltaics were investigated. Dopant inclusion did not change the crystal structure of NiS, according to the structural analysis of the synthesized samples. They are appropriate for solar cell applications since the morphological study verified the crack-free deposition. Optical research revealed that the deposited thin films had refractive index (n) ranges between 1.25 and 3.0, extinction coefficient (k) ranges between 0.01 and 0.13, and bandgap values between 2.25 and 2.54 eV. Overall findings indicated that doping is a useful method for modifying the composition, and therefore, the structural and morphological characteristics of NiS thin films, to enhance their optoelectronic behavior.

11.
Bioorg Chem ; 139: 106729, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37467621

RESUMO

Inhibiting the CDK2/cyclin A2 enzyme has been validated in multiple clinical manifestations related to multiple types of cancer. Herein, novel series of pyrolo[2,3-c]pyrazole, pyrolo[2,3-c]isoaxazole and pyrolo[2,3-d]pyrimidine, pyrolo[3,2-c]pyridine & indole based analogs were designed, synthesized and biologically evaluated for their in vitro antiproliferative activity where the obtained results revealed that most of the newly synthesized compounds showed significant cytotoxic activity towards MCF-7 (breast cancer cell lines) and HepG-2 (hepatocellular carcinoma) with IC50 ranging from 3.20 µM to 10.05 µM & from 2.18 µM to 13.49 µM, respectively, compared to that of Sorafenib (IC50 9.76 & 13.19 µM, respectively). The in vitro inhibitory profile of the most promising compounds (9, 11, 14, 15, 16, 17 and 20) towards CDK2/CyclinA2 was evaluated. Compounds 14 & 15 exhibited potent inhibitory profile against CDK2 with (IC50 0.11 and 0.262 µM, respectively comparable to Sorafenib IC50 0.184 µM. Western blotting of 14 & 15 at MCF-7 cell line confirmed the diminishing activity on CDK2. Furthermore, both compounds exserted a significant cell cycle arrest and apoptosis. Moreover, the normal cell line cytotoxicity for both compounds revealed low cytotoxic results in normal cells rather than cancer cells. Molecular docking and dynamic simulation validated the potentiality of the newly synthesized compounds to have high binding affinity within CDK2 binding pocket. 3DQSAR pharmacophore, in-silico ADME/TOPKAT studies and drug-likeness showed proper pharmacokinetic properties and helped in structure requirements prediction. The obtained model and pattern of substitution could be used for further development of CDK2 inhibitors.


Assuntos
Antineoplásicos , Simulação de Dinâmica Molecular , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Sorafenibe/farmacologia , Simulação de Acoplamento Molecular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Pirimidinas/química , Pirazóis/química , Inibidores de Proteínas Quinases , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina
12.
ACS Omega ; 8(28): 25378-25384, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37483228

RESUMO

Drugs that are illegal have long been a part of Egyptian society. The most widely misused form of narcotic is marijuana, also known as "bango", and other cannabis-related products like "hashish". The chemical profile of some available "hashish" in the local Egyptian illegal market and its possible country of origin are investigated using a gas chromatography-mass spectrometry technique in conjunction with a thermal separation probe (TSP/GC/MS). The TSP/GC/MS method reveals the presence of 23 different terpenes, of which caryophylla-4(12),8(13)-dien-5α-ol, isoaromadendrene epoxide, caryophyllene, and alloaromadendrene oxide-(1) are detected in high relative proportions. Ten cannabinoid components are also detected. These are cannabiorcochromene (CBC-C1), tetrahydrocannabivarin (THCV), delta-8-tetrahydrocannabinol (delta-8-THC), exo-THC, cannabichromene, cannabidiol (CBD), cannabielsoin (CBE), dronabinol (delta-9-THC), cannabigerol (CBG), and cannabinol (CBN). Phenotypic index (THC % + CBN %)/CBD %) is measured for the test samples to identify both the nature of the samples (fiber- or drug-type cannabis) and the country of origin.

13.
Sci Rep ; 13(1): 4109, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914664

RESUMO

Due to its prevalence in aquatic environments and potential cytotoxicity, 4-nonylphenol (4-NP) has garnered considerable attention. As a medicinal plant with numerous biological activities, Nigella sativa (black seed or black cumin) seed (NSS) is widely utilized throughout the world. Consequently, this study aimed to examine the potential protective effects of NSS against 4-NP-induced hepatotoxicity in African catfish (Clarias gariepinus). To achieve this objective, 18 fish (351 ± 3 g) were randomly divided into three equal groups for 21 days. The first group serves as a control which did not receive any treatment except the basal diet. The second and third groups were exposed to 4-NP at a dose of 0.1 mg L-1 of aquarium water and fed a basal diet only or supplemented with 2.5% NSS, respectively. The histological, histochemical, and ultrastructural features of the liver were subsequently evaluated as a damage biomarker of the hepatic tissue. Our results confirmed that 4-NP was a potent hepatotoxic agent, as 4-NP-intoxicated fish exhibited many lesions. Steatohepatitis, ballooning degeneration, sclerosing cholangitis, and coagulative necrosis of melanomacrophagecenters (MMCs) were observed. Hemosiderin, lipofuscin pigments, and proliferation of fibroblasts, kupffer cells, and telocytes were also demonstrated in the livers of 4-NP-intoxicated fish. In addition, decreased glycogen content and increased collagen deposition were observed in the hepatic tissue. Hepatocytes exhibited ultrastructural alterations in the chromatin, rough endoplasmic reticulum, smooth endoplasmic reticulum, mitochondria, lysosomes, and peroxisomes. Co-administration of 2.5% NSS to 4-NP-intoxicated fish significantly reduced these hepatotoxic effects. It nearly preserved the histological, histochemical, and ultrastructural integrity of hepatic tissue.


Assuntos
Peixes-Gato , Nigella sativa , Animais , Nigella sativa/química , Fígado/patologia , Sementes/química
14.
BMC Vet Res ; 19(1): 34, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737791

RESUMO

BACKGROUND: The Japanese quail is considered one of the most significant species in the poultry industry. However, the high male-to-female ratio results in the aggressive behavior of males. Dietary strategies that improve the properties of semen could reduce the number of males required to maintain optimal fertility and reduce aggressive behavior. Therefore, this study aims to provide insight into the possible improving efm fect of ginger roots on the reproductive aspects of Japanese male quails. RESULTS: To achieve this objective, powder of Ginger roots was administrated to 2 groups of quails (10, and 15 g/Kg feed) from 7 days until 70 days of age. Some males were reared singly in cages (n = 40 for each group) to assess sperm quality and other males (n = 32 for each group) were raised with females to assess fertility and sperm-egg penetration. Additionally, biochemical tests and histological examination were also performed. When compared to the control group, dietary inclusion of Ginger at a dose of 15 g caused more improvement in ejaculate volume, sperm concentration, motility, viability and sperm-egg penetration. Whereas, the motility and fertility percentages of sperms were equipotent in both doses. Dose-dependent increases were found in the cloacal gland area and volume, as well as foam production and weight. Both doses resulted in a significant reduction in plasma total cholesterol along with an elevation cin plasma testosterone and lipid peroxides. The comparison between all groups concerning nitric oxide, catalase, superoxide dismutase, and total antioxidant capacity revealed the absence of significant difference. Morphologically, the diameter of the seminiferous tubules and the height of germinal epithelium significantly increased especially in the higher dose of Ginger. CONCLUSIONS: Ginger roots especially at a dose of 15 gm/kg feed was effective in improving male reproductive performance. These findings are of utmost importance in encouraging the addition of Ginger roots in ration formulation in male quails.


Assuntos
Coturnix , Zingiber officinale , Masculino , Feminino , Animais , Sementes , Reprodução , Fertilidade
15.
Plast Reconstr Surg Glob Open ; 10(12): e4694, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36569241

RESUMO

The predictive capability of various risk assessment models (RAMs) in evaluating the risk of mortality in burn patients is not well established. It is also unclear which RAM provides the highest discriminative ability and presents the highest clinical utility. We pooled all available studies to establish this validity and compare the predictive capability of the various RAMs. Methods: We reviewed PubMed, MEDLINE, and Embase from their inception up until December 2021 for studies evaluating risk of mortality in burn patients as stratified by RAMs. Data were pooled using random-effect models and presented as area under the receiver operating characteristic (AUROC) curve. Results: Thirty-four studies, comprising of a total of 98,610 patients, were included in our analysis. Most studies were found to have a low risk of bias and a good measure of applicability. Nine RAMs were evaluated. We discovered that the classic Baux; the revised Baux; and the Fatality by Longevity, APACHE II score, Measured Extent of burn, and Sex (FLAMES) scores presented with the highest discriminative power with there being no significant difference between the results presented by them [AUROCs (95% CI), 0.92 (0.90-0.95), 0.92 (0.90-0.93), 0.94 (0.91-0.97), respectively, with P < 0.00001 for all]. Conclusions: Many RAMs exist with no consensus on the optimal model to utilize and assess risk of mortality for burn patients. This study is the first systematic review and meta-analysis to compare the current RAMs' discriminative ability to predict mortality in patients with burn injuries. This meta-analysis demonstrated that RAMs designed for assessing mortality in individuals with burns have acceptable to great discriminative capacity, with the classic Baux, revised Baux, and FLAMES demonstrating superior discriminative performance in predicting death. FLAMES exhibited the highest discriminative ability among the RAMs studied.

16.
Sci Rep ; 12(1): 21213, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481816

RESUMO

Bromobenzene (BB) is a hazardous environmental contaminant because of its multiple routes of exposure and the toxicity of its bio-derivates. It could elicit neuronal alterations by stimulating redox imbalance and apoptotic pathways. Gum Arabic (GA) protected the hippocampus of a type 2 diabetic rat model from cognitive decline. Whether gum Arabic nanoemulsion (GANE) can increase the neuroprotectant potency of GA in fighting BB-associated neurological lesions is the question to be answered. To accomplish this objective, 25 adult male Wistar rats were randomly and equally assigned into five groups. Control received olive oil (vehicle of BB). BB group received BB at a dose of 460 mg/kg BW. Blank nanoemulsion (BNE) group supplemented with BNE at 2 mL of 10% w/v aqueous suspension/kg BW. GANE group received GANE at a dose of 2 mL of 10% w/v aqueous suspension/kg BW. BB + GANE group exposed to BB in concomitant with GANE at the same previous doses. All interventions were carried out daily by oral gavage for ten consecutive days. BB caused a marked increase in malondialdehyde and succinate dehydrogenase together with a marked decrease in reduced glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, and lactate dehydrogenase in the brain. BB was accompanied by pathological deteriorations, amyloidosis, and reduced immuno-expression of integrase interactor 1 in the hippocampal region. Administration of GANE was beneficial in reversing the aforementioned abnormalities. These results pave the road for further discovery of nano-formulated natural products to counter the threats of BB.


Assuntos
Antioxidantes , Goma Arábica , Masculino , Animais , Ratos , Antioxidantes/farmacologia , Ratos Wistar
17.
RSC Adv ; 12(32): 20991-21003, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35919181

RESUMO

Zorifertinib (AZD-3759; ZFB) is a potent, novel, oral, small molecule used for the treatment of non-small cell lung cancer (NSCLC). ZFB is Epidermal Growth Factor Receptor (EGFR) inhibitor that is characterized by good permeability of the blood-brain barrier for (NSCLC) patients with EGFR mutations. The present research reports the profiling of in vitro, in vivo and reactive metabolites of ZFB. Prediction of vulnerable metabolic sites and reactivity pathways (cyanide and GSH) of ZFB were performed by WhichP450™ module (StarDrop software package) and XenoSite reactivity model (XenoSite Web Predictor-Home), respectively. ZFB in vitro metabolites were done by incubation with isolated perfused rat liver hepatocytes and rat liver microsomes (RLMs). Extraction of ZFB and its related metabolites from the incubation matrix was done by protein precipitation. In vivo metabolism was performed by giving ZFB (10 mg kg-1) through oral gavage to Sprague Dawley rats that were housed in metabolic cages. Urine was collected at specific time intervals (0, 6, 12, 18, 24, 48, 72, 96 and 120 h) from ZFB dosing. The collected urine samples were filtered then stored at -70 °C. N-Methyl piperazine ring of ZFB undergoes phase I metabolism forming iminium intermediates that were stabilized using potassium cyanide as a trapping agent. Incubation of ZFB with RLMs were performed in the presence of 1.0 mM KCN and 1.0 mM glutathione to check reactive intermediates as it is may be responsible for toxicities associated with ZFB usage. For in vitro metabolites there were six in vitro phase I metabolites, three in vitro phase II metabolites, seven reactive intermediates (four GSH conjugates and three cyano adducts) of ZFB were detected by LC-IT-MS. For in vivo metabolites there were six in vivo phase I and three in vivo phase II metabolites of ZFB were detected by LC-IT-MS. In vitro and in vivo phase I metabolic pathways were N-demethylation, O-demethylation, hydroxylation, reduction, defluorination and dechlorination. In vivo phase II metabolic reaction was direct sulphate and glucuronic acid conjugation with ZFB.

18.
J Enzyme Inhib Med Chem ; 37(1): 1957-1973, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35815597

RESUMO

Cyclin-dependent kinase inhibition is considered a promising target for cancer treatment for its crucial role in cell cycle regulation. Pyrazolo pyrimidine derivatives were well established for their antitumor activity via CDK2 inhibition. In this research, new series of pyrazolopyrimidine derivatives (4-15) was designed and synthesised as novel CDK2 inhibitors. The anti-proliferative activities against MCF-7, HCT-116, and HepG-2 were used to evaluate their anticancer activity as novel CDK2 inhibitors. Most of the compounds showed superior cytotoxic activity against MCF-7 and HCT-116 compared to Sorafenib. Only compounds 8, 14, and 15 showed potent activity against HepG-2. The CDK2/cyclin A2 enzyme inhibitory activity was tested for all synthesised compounds. Compound 15 showed the most significant inhibitory activity with IC50 0.061 ± 0.003 µM. It exerted remarkable alteration in Pre G1 and S phase cell cycle progression and caused apoptosis in HCT cells. In addition, the normal cell line cytotoxicity for compound 15 was assigned revealing low cytotoxic results in normal cells rather than cancer cells. Molecular docking was achieved on the designed compounds and confirmed the two essential hydrogen binding with Leu83 in CDK2 active site. In silico ADMET studies and drug-likeness showed proper pharmacokinetic properties which helped in structure requirements prediction for the observed antitumor activity.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Antineoplásicos/química , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazóis/química , Pirimidinas/química , Relação Estrutura-Atividade
19.
PLoS Genet ; 18(6): e1010267, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35714159

RESUMO

The conserved nucleic acid binding protein Translin contributes to numerous facets of mammalian biology and genetic diseases. It was first identified as a binder of cancer-associated chromosomal translocation breakpoint junctions leading to the suggestion that it was involved in genetic recombination. With a paralogous partner protein, Trax, Translin has subsequently been found to form a hetero-octomeric RNase complex that drives some of its functions, including passenger strand removal in RNA interference (RNAi). The Translin-Trax complex also degrades the precursors to tumour suppressing microRNAs in cancers deficient for the RNase III Dicer. This oncogenic activity has resulted in the Translin-Trax complex being explored as a therapeutic target. Additionally, Translin and Trax have been implicated in a wider range of biological functions ranging from sleep regulation to telomere transcript control. Here we reveal a Trax- and RNAi-independent function for Translin in dissociating RNA polymerase II from its genomic template, with loss of Translin function resulting in increased transcription-associated recombination and elevated genome instability. This provides genetic insight into the longstanding question of how Translin might influence chromosomal rearrangements in human genetic diseases and provides important functional understanding of an oncological therapeutic target.


Assuntos
RNA Polimerase II , Ribonuclease III , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica/genética , Humanos , Mamíferos/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo
20.
RSC Adv ; 12(23): 14865-14882, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35702208

RESUMO

CDK2 inhibition is an appealing target for cancer treatment that targets tumor cells in a selective manner. A new set of small molecules featuring the privileged pyrazolo[3,4-d]pyrimidine and pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine scaffolds (4-13) as well as the thioglycoside derivatives (14, 15) were designed, and synthesized as novel CDK2 targeting compounds. The growth of the three examined cell lines was significantly inhibited by most of the prepared compounds. Results revealed that most of the compounds showed superior cytotoxic activities against MCF-7 and HCT-116 with IC50 range (45-97 nM) and (6-99 nM), respectively, and moderate activity against HepG-2 with IC50 range of (48-90 nM) compared to sorafenib (IC50: 144, 176 and 19 nM, respectively). Of these compounds, 14 & 15 showed the best cytotoxic activities against the three cell lines with IC50 values of 45, 6, and 48 nM and 46, 7, and 48 nM against MCF-7, HCT-116 and HepG-2, respectively. Enzymatic inhibitory activity against CDK2/cyclin A2 was achieved for the most potent anti-proliferative compounds. Compounds 14, 13 and 15 revealed the most significant inhibitory activity with IC50 values of 0.057 ± 0.003, 0.081 ± 0.004 and 0.119 ± 0.007 µM, respectively compared to sorafenib (0.184 ± 0.01 µM). Compound 14 displayed potent dual activity against the examined cell lines and CDK2, and was thus selected for further investigations. It exerted a significance alteration in cell cycle progression, in addition to apoptosis induction within HCT cells. Molecular docking simulation of the designed compounds confirmed the good fit into the CDK2 active site through the essential hydrogen bonding with Leu83. In silico ADMET studies and drug-likeness studies using a Boiled Egg chart showed suitable pharmacokinetic properties which helped in structure requirement prediction for the observed antitumor activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA