RESUMO
The development of hybrid molecules with significant human therapeutic properties is one of the main approaches of pharmaceutical research. One of the most important pharmacophores is the quinazolin-4(3H)-one heterocycle moiety, due to its wide range of biological activities. By its derivatization with polyphenolic compounds, in our previous research, it proved to possess a good antiradical activity of ortho-diphenolic derivatives of quinazolin-4(3H)-one. In this study, we developed two new series of compounds, with an additional phenolic group or with a methyl group on the thioacetohydrazone fragment. The methods used to evaluate the activity of the compounds were radical scavenging, reduction of oxidizing reagents and transition metals' ions chelation assays. Quantum descriptors were also calculated in order to evaluate the influence of substituents and their position on the activity of the compounds. The cytotoxic activity was evaluated using normal human foreskin fibroblast cells (BJ) and two cancerous cell lines, lung adenocarcinoma cells (A549) and prostate carcinoma cells (LNCaP). The results obtained for the pyrogallol derivatives showed a high antioxidant activity compared to ascorbic acid and Trolox. All the synthesized compounds displayed a higher cytotoxicity against the cancerous cell types and a high cytocompatibility with the normal cells. The antioxidant activity was deeply influenced by the addition of the third phenolic group in the synthesized molecules.
RESUMO
Background and objectives: Cancer represents the miscommunication between and within the body cells. The mutations of the oncogenes encoding the MAPK pathways play an important role in the development of tumoral diseases. The mutations of KRAS and BRAF oncogenes are involved in colorectal cancer and melanoma, while the NRAS mutations are associated with melanoma. Thiazolidine-2,4-dione is a versatile scaffold in medicinal chemistry and a useful tool in the development of new antitumoral compounds. The aim of our study was to predict the pharmacokinetic/pharmacodynamic properties, the drug-likeness and lead-likeness of two series of synthetic 5-arylidene(chromenyl-methylene)-thiazolidinediones, the molecular docking on the oncoproteins K-Ras, N-Ras and B-Raf, and to investigate the cytotoxicity of the compounds, in order to select the best structural profile for potential anticancer agents. Materials and Methods: In our paper we studied the cytotoxicity of two series of thiazolidine-2,4-dione derivatives, their ADME-Tox properties and the molecular docking on a mutant protein of K-Ras, two isoforms of N-Ras and an isoform of B-Raf with 16 mutations. Results: The heterocyclic compounds strongly interact with K-Ras and N-Ras right after their posttranslational processing and/or compete with GDP for the nucleotide-binding site of the two GTPases. They are less active against the GDP-bound states of the two targets. All derivatives have a similar binding pattern in the active site of B-Raf. Conclusions: The data obtained encourage the further investigation of the 5-arylidene(chromenyl-methylene)-thiazolidinediones as potential new agents against the oncoproteins K-Ras, N-Ras and B-Raf.