Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Tissue Eng ; 14: 20417314231219813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143931

RESUMO

Congenital and chronic liver diseases have a substantial health burden worldwide. The most effective treatment available for these patients is whole organ transplantation; however, due to the severely limited supply of donor livers and the side effects associated with the immunosuppressive regimen required to accept allograft, the mortality rate in patients with end-stage liver disease is annually rising. Stem cell-based therapy aims to provide alternative treatments by either cell transplantation or bioengineered construct transplantation. Human amnion epithelial cells (AEC) are a widely available, ethically neutral source of cells with the plasticity and potential of multipotent stem cells and immunomodulatory properties of perinatal cells. AEC have been proven to be able to achieve functional improvement towards hepatocyte-like cells, capable of rescuing animals with metabolic disorders; however, they showed limited metabolic activities in vitro. Decellularised extracellular matrix (ECM) scaffolds have gained recognition as adjunct biological support. Decellularised scaffolds maintain native ECM components and the 3D architecture instrumental of the organ, necessary to support cells' maturation and function. We combined ECM-scaffold technology with primary human AEC, which we demonstrated being equipped with essential ECM-adhesion proteins, and evaluated the effects on AEC differentiation into functional hepatocyte-like cells (HLC). This novel approach included the use of a custom 4D bioreactor to provide constant oxygenation and media perfusion to cells in 3D cultures over time. We successfully generated HLC positive for hepatic markers such as ALB, CYP3A4 and CK18. AEC-derived HLC displayed early signs of hepatocyte phenotype, secreted albumin and urea, and expressed Phase-1 and -2 enzymes. The combination of liver-specific ECM and bioreactor provides a system able to aid differentiation into HLC, indicating that the innovative perfusion ECM-scaffold technology may support the functional improvement of multipotent and pluripotent stem cells, with important repercussions in the bioengineering of constructs for transplantation.

2.
Cancers (Basel) ; 12(2)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033473

RESUMO

The liver is the most common site for colorectal cancer (CRC) metastasis and there is an urgent need for new tissue culture models to study colorectal cancer liver metastasis (CRLM) as current models do not mimic the biological, biochemical, and structural characteristics of the metastatic microenvironment. Decellularization provides a novel approach for the study of the cancer extracellular matrix (ECM) as decellularized scaffolds retain tissue-specific features and biological properties. In the present study, we created a 3D model of CRC and matched CRLM using patient-derived decellularized ECM scaffolds seeded with the HT-29 CRC cell line. Here, we show an increased HT-29 cell proliferation and migration capability when cultured in cancer-derived scaffolds compared to same-patient healthy colon and liver tissues. HT-29 cells cultured in CRLM scaffolds also displayed an indication of epithelial-mesenchymal transition (EMT), with a loss of E-cadherin and increased Vimentin expression. EMT was confirmed by gene expression profiling, with the most represented biological processes in CRLM-seeded scaffolds involving demethylation, deacetylation, a cellular response to stress metabolic processes, and a response to the oxygen level and starvation. HT-29 cells cultured in cancer-specific 3D microenvironments showed a reduced response to treatment with 5-fluorouracil and 5-fluorouracil combined with Irinotecan when used at a standard IC50 (as determined in the 2D culture). Our 3D culture system with patient-derived tissue-specific decellularized ECM better recapitulates the metastatic microenvironment compared to conventional 2D culture conditions and represents a relevant approach for the study of CRLM progression and assessing the response to chemotherapy agents.

3.
Nat Commun ; 9(1): 4286, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327457

RESUMO

A tissue engineered oesophagus could overcome limitations associated with oesophageal substitution. Combining decellularized scaffolds with patient-derived cells shows promise for regeneration of tissue defects. In this proof-of-principle study, a two-stage approach for generation of a bio-artificial oesophageal graft addresses some major challenges in organ engineering, namely: (i) development of multi-strata tubular structures, (ii) appropriate re-population/maturation of constructs before transplantation, (iii) cryopreservation of bio-engineered organs and (iv) in vivo pre-vascularization. The graft comprises decellularized rat oesophagus homogeneously re-populated with mesoangioblasts and fibroblasts for the muscle layer. The oesophageal muscle reaches organised maturation after dynamic culture in a bioreactor and functional integration with neural crest stem cells. Grafts are pre-vascularised in vivo in the omentum prior to mucosa reconstitution with expanded epithelial progenitors. Overall, our optimised two-stage approach produces a fully re-populated, structurally organized and pre-vascularized oesophageal substitute, which could become an alternative to current oesophageal substitutes.


Assuntos
Esôfago/citologia , Esôfago/fisiologia , Músculo Esquelético/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Criança , Pré-Escolar , Criopreservação/métodos , Células Epiteliais , Matriz Extracelular/fisiologia , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Crista Neural/transplante , Ratos Sprague-Dawley
4.
EMBO J ; 36(20): 3029-3045, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28899900

RESUMO

Expression of the Ret receptor tyrosine kinase is a defining feature of enteric neurons. Its importance is underscored by the effects of its mutation in Hirschsprung disease, leading to absence of gut innervation and severe gastrointestinal symptoms. We report a new and physiologically significant site of Ret expression in the intestine: the intestinal epithelium. Experiments in Drosophila indicate that Ret is expressed both by enteric neurons and adult intestinal epithelial progenitors, which require Ret to sustain their proliferation. Mechanistically, Ret is engaged in a positive feedback loop with Wnt/Wingless signalling, modulated by Src and Fak kinases. We find that Ret is also expressed by the developing intestinal epithelium of mice, where its expression is maintained into the adult stage in a subset of enteroendocrine/enterochromaffin cells. Mouse organoid experiments point to an intrinsic role for Ret in promoting epithelial maturation and regulating Wnt signalling. Our findings reveal evolutionary conservation of the positive Ret/Wnt signalling feedback in both developmental and homeostatic contexts. They also suggest an epithelial contribution to Ret loss-of-function disorders such as Hirschsprung disease.


Assuntos
Diferenciação Celular , Proliferação de Células , Células Epiteliais/fisiologia , Mucosa Intestinal/fisiologia , Proteínas Proto-Oncogênicas c-ret/metabolismo , Animais , Drosophila , Regulação da Expressão Gênica , Humanos , Camundongos , Via de Sinalização Wnt
5.
Nat Commun ; 8: 15937, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28671186

RESUMO

Enteric nervous system neuropathy causes a wide range of severe gut motility disorders. Cell replacement of lost neurons using enteric neural stem cells (ENSC) is a possible therapy for these life-limiting disorders. Here we show rescue of gut motility after ENSC transplantation in a mouse model of human enteric neuropathy, the neuronal nitric oxide synthase (nNOS-/-) deficient mouse model, which displays slow transit in the colon. We further show that transplantation of ENSC into the colon rescues impaired colonic motility with formation of extensive networks of transplanted cells, including the development of nNOS+ neurons and subsequent restoration of nitrergic responses. Moreover, post-transplantation non-cell-autonomous mechanisms restore the numbers of interstitial cells of Cajal that are reduced in the nNOS-/- colon. These results provide the first direct evidence that ENSC transplantation can modulate the enteric neuromuscular syncytium to restore function, at the organ level, in a dysmotile gastrointestinal disease model.


Assuntos
Colo/enzimologia , Sistema Nervoso Entérico/citologia , Pseudo-Obstrução Intestinal/cirurgia , Células-Tronco Neurais/transplante , Óxido Nítrico Sintase/deficiência , Animais , Colo/fisiopatologia , Sistema Nervoso Entérico/enzimologia , Feminino , Motilidade Gastrointestinal , Humanos , Pseudo-Obstrução Intestinal/enzimologia , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/transplante , Óxido Nítrico Sintase/genética
6.
Dev Biol ; 416(1): 255-265, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27266404

RESUMO

The enteric nervous system (ENS) is required for peristalsis of the gut and is derived from Enteric Neural Crest Cells (ENCCs). During ENS development, the RET receptor tyrosine kinase plays a critical role in the proliferation and survival of ENCCs, their migration along the developing gut, and differentiation into enteric neurons. Mutations in RET and its ligand GDNF cause Hirschsprung disease (HSCR), a complex genetic disorder in which ENCCs fail to colonize variable lengths of the distal bowel. To identify key regulators of ENCCs and the pathways underlying RET signaling, gene expression profiles of untreated and GDNF-treated ENCCs from E14.5 mouse embryos were generated. ENCCs express genes that are involved in both early and late neuronal development, whereas GDNF treatment induced neuronal maturation. Predicted regulators of gene expression in ENCCs include the known HSCR genes Ret and Sox10, as well as Bdnf, App and Mapk10. The regulatory overlap and functional interactions between these genes were used to construct a regulatory network that is underlying ENS development and connects to known HSCR genes. In addition, the adenosine receptor A2a (Adora2a) and neuropeptide Y receptor Y2 (Npy2r) were identified as possible regulators of terminal neuronal differentiation in GDNF-treated ENCCs. The human orthologue of Npy2r maps to the HSCR susceptibility locus 4q31.3-q32.3, suggesting a role for NPY2R both in ENS development and in HSCR.


Assuntos
Sistema Nervoso Entérico/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Doença de Hirschsprung/embriologia , Doença de Hirschsprung/genética , Crista Neural/embriologia , Animais , Antígenos de Diferenciação , Separação Celular , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transdução de Sinais , Transcriptoma
7.
Am J Physiol Gastrointest Liver Physiol ; 310(10): G768-75, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26893157

RESUMO

Serotonin (5-hydroxytryptamine, 5-HT) and its transporters and receptors are involved in a wide array of digestive functions. In particular, 5-HT4 receptors are known to mediate intestinal peristalsis and recent data in experimental animals have shown their role in neuronal maintenance and neurogenesis. This study has been designed to test whether prucalopride, a well-known full 5-HT4 agonist, exerts protective effects on neurons, including enteric neurons, exposed to oxidative stress challenge. Sulforhodamine B assay was used to determine the survival of SH-SY5Y cells, human enteric neurospheres, and ex vivo submucosal neurons following H2O2 exposure in the presence or absence of prucalopride (1 nM). Specificity of 5-HT4-mediated neuroprotection was established by experiments performed in the presence of GR113808, a 5-HT4 antagonist. Prucalopride exhibited a significant neuroprotective effect. SH-SY5Y cells pretreated with prucalopride were protected from the injury elicited by H2O2 as shown by increased survival (73.5 ± 0.1% of neuronal survival vs. 33.3 ± 0.1%, respectively; P < 0.0001) and a significant reduction of proapoptotic caspase-3 and caspase-9 activation in all neurons tested. The protective effect of prucalopride was reversed by the specific 5-HT4 antagonist GR113808. Prucalopride promotes a significant neuroprotection against oxidative-mediated proapoptotic mechanisms. Our data pave the way for novel therapeutic implications of full 5-HT4 agonists in gut dysmotility characterized by neuronal degeneration, which go beyond the well-known enterokinetic effect.


Assuntos
Benzofuranos/farmacologia , Intestinos/inervação , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Adulto , Animais , Apoptose , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Intestinos/citologia , Masculino , Camundongos , Pessoa de Meia-Idade , Neurônios/efeitos dos fármacos , Estresse Oxidativo
8.
PLoS One ; 11(1): e0147989, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26824433

RESUMO

OBJECTIVES: Enteric neuropathies are severe gastrointestinal disorders with unsatisfactory outcomes. We aimed to investigate the potential of enteric neural stem cell therapy approaches for such disorders by transplanting mouse enteric neural crest cells (ENCCs) into ganglionic and aganglionic mouse gut in vivo and analysing functional integration and long-term safety. DESIGN: Neurospheres generated from yellow fluorescent protein (YFP) expressing ENCCs selected from postnatal Wnt1-cre;R26R-YFP/YFP murine gut were transplanted into ganglionic hindgut of wild-type littermates or aganglionic hindgut of Ednrbtm1Ywa mice (lacking functional endothelin receptor type-B). Intestines were then assessed for ENCC integration and differentiation using immunohistochemistry, cell function using calcium imaging, and long-term safety using PCR to detect off-target YFP expression. RESULTS: YFP+ ENCCs engrafted, proliferated and differentiated into enteric neurons and glia within recipient ganglionic gut. Transplanted cells and their projections spread along the endogenous myenteric plexus to form branching networks. Electrical point stimulation of endogenous nerve fibres resulted in calcium transients (F/F0 = 1.16 ± 0.01;43 cells, n = 6) in YFP+ transplanted ENCCs (abolished with TTX). Long-term follow-up (24 months) showed transplanted ENCCs did not give rise to tumours or spread to other organs (PCR negative in extraintestinal sites). In aganglionic gut ENCCs similarly spread and differentiated to form neuronal and glial networks with projections closely associated with endogenous neural networks of the transition zone. CONCLUSIONS: Transplanted ENCCs successfully engrafted into recipient ganglionic and aganglionic gut showing appropriate spread, localisation and, importantly, functional integration without any long-term safety issues. This study provides key support for the development and use of enteric neural stem cell therapies.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Intestinos/citologia , Crista Neural/citologia , Células-Tronco Neurais/transplante , Neuroglia/citologia , Neurônios/citologia , Animais , Animais Recém-Nascidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomarcadores/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Engenharia Celular , Estimulação Elétrica , Expressão Gênica , Sobrevivência de Enxerto , Mucosa Intestinal/metabolismo , Intestinos/inervação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Fibras Nervosas/metabolismo , Crista Neural/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Receptor de Endotelina B/genética , Receptor de Endotelina B/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Transfecção , Transgenes
9.
PLoS One ; 10(3): e0119467, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799576

RESUMO

OBJECTIVES: Enteric neural stem cells provide hope of curative treatment for enteric neuropathies. Current protocols for their harvesting from humans focus on the generation of 'neurospheres' from cultures of dissociated gut tissue. The study aims to better understand the derivation, generation and composition of enteric neurospheres. DESIGN: Gut tissue was obtained from Wnt1-Cre;Rosa26Yfp/Yfp transgenic mice (constitutively labeled neural crest cells) and paediatric patients. Gut cells were cultured either unsorted (mixed neural crest/non-neural crest), or following FACS selection into neural crest (murine-YFP+ve/human-p75+ve) or non-neural crest (YFP-ve/p75-ve) populations. Cultures and resultant neurospheres were characterized using immunolabelling in vitro and following transplantation in vivo. RESULTS: Cultures of (i) unsorted, (ii) neural crest, and (iii) non-neural crest cell populations generated neurospheres similar in numbers, size and morphology. Unsorted neurospheres were highly heterogeneous for neural crest content. Neural crest-derived (YFP+ve/p75+ve) neurospheres contained only neural derivatives (neurons and glia) and were devoid of non-neural cells (i.e. negative for SMA, c-Kit), with the converse true for non-neural crest-derived (YFP-ve/p75-ve) 'neurospheres'. Under differentiation conditions only YFP+ve cells gave rise to neural derivatives. Both YFP+ve and YFP-ve cells displayed proliferation and spread upon transplantation in vivo, but YFP-ve cells did not locate or integrate within the host ENS. CONCLUSIONS: Spherical accumulations of cells, so-called 'neurospheres' forming in cultures of dissociated gut contain variable proportions of neural crest-derived cells. If they are to be used for ENS cell replacement therapy then improved protocols for their generation, including cell selection, should be sought in order to avoid inadvertent transplantation of non-therapeutic, non-ENS cells.


Assuntos
Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , Sistema Nervoso Entérico/citologia , Trato Gastrointestinal/citologia , Crista Neural/citologia , Células-Tronco Neurais/citologia , Animais , Proteínas de Bactérias/metabolismo , Células Cultivadas , Sistema Nervoso Entérico/metabolismo , Feminino , Trato Gastrointestinal/metabolismo , Humanos , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Crista Neural/metabolismo , Células-Tronco Neurais/metabolismo , Proteína Wnt1/fisiologia
10.
Cell Mol Biol Lett ; 18(2): 284-96, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23666596

RESUMO

The breast cancer type 1 susceptibility gene (BRCA1) is a tumor suppressor gene, mutations or loss of which lead to genomic instability and breast cancer. BRCA1 protein is part of a large multi-protein complex involved in a variety of DNA repair and transcription regulatory functions. At least four splice variants have been described and these differ in their function and tissue and spatio-temporal expression patterns. Structural analysis has revealed the presence of two nuclear localization signals (NLS) located in exon 11 of BRCA1. Interestingly, a splice variant of the protein that lacks both of the known NLS still manages to gain entry to the nucleus. While there is experimental proof for the translocation of these proteins by binding to other established nuclear proteins, we examined the possibility of a hitherto unidentified NLS in this particular variant. In this paper, we present evidence for the existence of a previously unreported non-canonical NLS contained within the first 39 amino acids of exon 11. A fusion protein with this 39mer and a reporter green fluorescent protein translocated into the nucleus when it was expressed in breast epithelial cells. We demonstrate the presence of a hitherto unreported noncanonical NLS in exon 11a of BRCA1. This NLS might aid proteins that were encoded by splice variants and lack the canonical NLS to localize to the nucleus.


Assuntos
Processamento Alternativo/genética , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Núcleo Celular/metabolismo , Sinais de Localização Nuclear/metabolismo , Sequência de Aminoácidos , Proteína BRCA1/genética , Linhagem Celular Tumoral , Éxons/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Dados de Sequência Molecular , Sinais de Localização Nuclear/química , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade
11.
Curr Opin Pharmacol ; 11(6): 617-23, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22056114

RESUMO

Currently available therapies for gastrointestinal motility conditions are often inadequate. Recent scientific advances, however, have facilitated the identification of neural stem cells as novel tools for cellular replenishment. Such cells can be generated from a number of tissue sources including the gut itself. Neural stem cells can readily be harvested from postnatal human gut including by conventional endoscopy, and in experimental transplantation studies appear capable of generating a neo-Enteric Nervous System. Current initiatives are addressing pre-clinical proof of concept studies in vivo utilising animal models of disease. Although definitive cell replenishment therapies for gut motility disorders appear to be an exciting and realistic prospect, even in the short-term, a number of challenges remain to be addressed before definitive clinical application.


Assuntos
Gastroenteropatias/terapia , Motilidade Gastrointestinal , Células-Tronco Neurais/transplante , Animais , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/fisiopatologia , Gastroenteropatias/fisiopatologia , Trato Gastrointestinal/inervação , Trato Gastrointestinal/fisiopatologia , Doença de Hirschsprung/fisiopatologia , Doença de Hirschsprung/terapia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Crista Neural/citologia , Células-Tronco Neurais/citologia
12.
Semin Pediatr Surg ; 18(4): 263-73, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19782309

RESUMO

Gut motility disorders represent a significant challenge in clinical management with current palliative approaches failing to overcome disease and treatment-related morbidity. The recent progress with stem cells to restore missing or defective elements of the gut neuromusculature offers new hope for potential cure. Focusing on enteric neuropathies such as Hirschsprung's disease, the review discusses the progress that has been made in the sourcing of putative stem cells and the studies into their biology and therapeutic potential. It also explores the practical challenges that must be overcome before stem cell-based therapies can be applied in the clinical arena. Although many obstacles remain, the speed of advancement of the enteric stem cell field suggests that such therapies are on the horizon.


Assuntos
Motilidade Gastrointestinal/fisiologia , Doença de Hirschsprung/terapia , Transplante de Células-Tronco , Animais , Doenças do Sistema Nervoso Autônomo/complicações , Doenças do Sistema Nervoso Autônomo/patologia , Doenças do Sistema Nervoso Autônomo/terapia , Criança , Sistema Nervoso Entérico/patologia , Sistema Nervoso Entérico/fisiopatologia , Doença de Hirschsprung/etiologia , Doença de Hirschsprung/patologia , Humanos
13.
Development ; 135(18): 3007-11, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18684739

RESUMO

Neural crest cells (NCCs) form at the dorsal margin of the neural tube and migrate along distinct pathways throughout the vertebrate embryo to generate multiple cell types. A subpopulation of vagal NCCs invades the foregut and colonises the entire gastrointestinal tract to form the enteric nervous system (ENS). The colonisation of embryonic gut by NCCs has been studied extensively in chick embryos, and genetic studies in mice have identified genes crucial for ENS development, including Ret. Here, we have combined mouse embryo and organotypic gut culture to monitor and experimentally manipulate the progenitors of the ENS. Using this system, we demonstrate that lineally marked intestinal ENS progenitors from E11.5 mouse embryos grafted into the early vagal NCC pathway of E8.5 embryos colonise the entire length of the gastrointestinal tract. By contrast, similar progenitors transplanted into Ret-deficient host embryos are restricted to the proximal foregut. Our findings establish an experimental system that can be used to explore the interactions of NCCs with their cellular environment and reveal a previously unrecognised non-cell-autonomous effect of Ret deletion on ENS development.


Assuntos
Sistema Digestório/embriologia , Sistema Nervoso Entérico/fisiologia , Proteínas Proto-Oncogênicas c-ret/genética , Deleção de Sequência , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Sistema Digestório/metabolismo , Embrião de Mamíferos , Sistema Nervoso Entérico/citologia , Camundongos , Camundongos Knockout , Crista Neural/citologia , Crista Neural/embriologia , Crista Neural/fisiologia , Técnicas de Cultura de Órgãos , Proteínas Proto-Oncogênicas c-ret/metabolismo , Células-Tronco/metabolismo , Fatores de Tempo
14.
Nature ; 446(7135): 547-51, 2007 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-17322904

RESUMO

Normal organogenesis requires co-ordinate development and interaction of multiple cell types, and is seemingly governed by tissue specific factors. Lymphoid organogenesis during embryonic life is dependent on molecules the temporal expression of which is tightly regulated. During this process, haematopoietic 'inducer' cells interact with stromal 'organizer' cells, giving rise to the lymphoid organ primordia. Here we show that the haematopoietic cells in the gut exhibit a random pattern of motility before aggregation into the primordia of Peyer's patches, a major component of the gut-associated lymphoid tissue. We further show that a CD45+CD4-CD3-Il7Ralpha-c-Kit+CD11c+ haematopoietic population expressing lymphotoxin has an important role in the formation of Peyer's patches. A subset of these cells expresses the receptor tyrosine kinase RET, which is essential for mammalian enteric nervous system formation. We demonstrate that RET signalling is also crucial for Peyer's patch formation. Functional genetic analysis revealed that Gfra3-deficiency results in impairment of Peyer's patch development, suggesting that the signalling axis RET/GFRalpha3/ARTN is involved in this process. To support this hypothesis, we show that the RET ligand ARTN is a strong attractant of gut haematopoietic cells, inducing the formation of ectopic Peyer's patch-like structures. Our work strongly suggests that the RET signalling pathway, by regulating the development of both the nervous and lymphoid system in the gut, has a key role in the molecular mechanisms that orchestrate intestine organogenesis.


Assuntos
Organogênese , Nódulos Linfáticos Agregados/embriologia , Nódulos Linfáticos Agregados/enzimologia , Proteínas Proto-Oncogênicas c-ret/metabolismo , Animais , Antígenos CD2/genética , Antígenos CD2/metabolismo , Movimento Celular , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Hematopoese , Humanos , Intestinos/citologia , Intestinos/embriologia , Intestinos/enzimologia , Intestinos/imunologia , Camundongos , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Nódulos Linfáticos Agregados/citologia , Proteínas Proto-Oncogênicas c-ret/genética , Transdução de Sinais
15.
J Comp Neurol ; 500(6): 1136-53, 2007 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-17183535

RESUMO

RET (for "rearranged during transfection") is a transmembrane tyrosine kinase signaling receptor for members of the glial cell line-derived neurotrophic factor (GDNF) family of ligands. We used RET immunohistochemistry (IHC), double-labeling immunofluorescence (IF), and in situ hybridization (ISH) in adult naïve and nerve-injured rats to study the distribution of RET in the spinal cord. In the dorsal horn, strong RET-immunoreactive (-ir) fibers were abundant in lamina II-inner (II(i)), although this labeling was preferentially observed after an antigen-unmasking procedure. After dorsal rhizotomy, RET-ir fibers in lamina II(i) completely disappeared from the dorsal horn, indicating that they were all primary afferents. After peripheral axotomy, RET-ir in primary afferents decreased in lamina II(i) and appeared to increase slightly in laminae III and IV. RET-ir was also observed in neurons and dendrites throughout the dorsal horn. Some RET-ir neurons in lamina I had the morphological appearance of nociceptive projection neurons, which was confirmed by the finding that 53% of RET-ir neurons in lamina I colocalized with neurokinin-1. GDNF-ir terminals were in close proximity to RET-ir neurons in the superficial dorsal horn. In the ventral horn, RET-ir was strongly expressed by motoneurons, with the strongest staining in small, presumably gamma-motoneurons. Increased RET expression following peripheral axotomy was most pronounced in alpha-motoneurons. The expression and regulation pattern of RET in the spinal cord are in line with its involvement in regenerative processes following nerve injury. The presence of RET in dorsal horn neurons, including nociceptive projection neurons, suggests that RET also has a role in signal transduction at the spinal level. This role may include mediating the effects of GDNF released from nociceptive afferent fibers.


Assuntos
Neurônios Motores/enzimologia , Fibras Nervosas/enzimologia , Células do Corno Posterior/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Animais , Axotomia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Imuno-Histoquímica , Masculino , Degeneração Neural/enzimologia , Dor/enzimologia , Proteínas Tirosina Quinases/metabolismo , Ratos , Ratos Wistar , Rizotomia , Transdução de Sinais/fisiologia
16.
Development ; 130(25): 6387-400, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14623827

RESUMO

Cultures of dissociated foetal and postnatal mouse gut gave rise to neurosphere-like bodies, which contained large numbers of mature neurons and glial cells. In addition to differentiated cells, neurosphere-like bodies included proliferating progenitors which, when cultured at clonal densities, gave rise to colonies containing many of the neuronal subtypes and glial cells present in the mammalian enteric nervous system. These progenitors were also capable of colonising wild-type and aganglionic gut in organ culture and had the potential to generate differentiated progeny that localised within the intrinsic ganglionic plexus. Similar progenitors were also derived from the normoganglionic small intestine of mice with colonic aganglionosis. Our findings establish the feasibility of expanding and isolating early progenitors of the enteric nervous system based on their ability to form distinct neurogenic and gliogenic structures in culture. Furthermore, these experiments provide the rationale for the development of novel approaches to the treatment of congenital megacolon (Hirschsprung's disease) based on the colonisation of the aganglionic gut with progenitors derived from normoganglionic bowel segments.


Assuntos
Sistema Nervoso Entérico/embriologia , Intestinos/inervação , Neuroglia/citologia , Neurônios/citologia , Envelhecimento , Animais , Células Cultivadas , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Feto , Camundongos , Camundongos Knockout , Camundongos Mutantes , Neuroglia/fisiologia , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Proteínas Proto-Oncogênicas c-ret , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/genética , Células-Tronco/citologia
17.
Development ; 129(22): 5151-60, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12399307

RESUMO

The majority of neurones and glia of the enteric nervous system (ENS) are derived from the vagal neural crest. Shortly after emigration from the neural tube, ENS progenitors invade the anterior foregut and, migrating in a rostrocaudal direction, colonise in an orderly fashion the rest of the foregut, the midgut and the hindgut. We provide evidence that activation of the receptor tyrosine kinase RET by glial cell line-derived neurotrophic factor (GDNF) is required for the directional migration of ENS progenitors towards and within the gut wall. We find that neural crest-derived cells present within foetal small intestine explants migrate towards an exogenous source of GDNF in a RET-dependent fashion. Consistent with an in vivo role of GDNF in the migration of ENS progenitors, we demonstrate that Gdnf is expressed at high levels in the gut of mouse embryos in a spatially and temporally regulated manner. Thus, during invasion of the foregut by vagal-derived neural crest cells, expression of Gdnf was restricted to the mesenchyme of the stomach, ahead of the invading NC cells. Twenty-four hours later and as the ENS progenitors were colonising the midgut, Gdnf expression was upregulated in a more posterior region - the caecum anlage. In further support of a role of endogenous GDNF in enteric neural crest cell migration, we find that in explant cultures GDNF produced by caecum is sufficient to attract NC cells residing in more anterior gut segments. In addition, two independently generated loss-of-function alleles of murine Ret, Ret.k- and miRet51, result in characteristic defects of neural crest cell migration within the developing gut. Finally, we identify phosphatidylinositol-3 kinase and the mitogen-activated protein kinase signalling pathways as playing crucial roles in the migratory response of enteric neural crest cells to GDNF.


Assuntos
Proteínas de Drosophila , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/embriologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Células-Tronco/metabolismo , Animais , Células COS , Ceco/citologia , Ceco/embriologia , Ceco/metabolismo , Movimento Celular/genética , Células Cultivadas , Ativação Enzimática , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Mamíferos/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Mutantes , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Fatores de Crescimento Neural/metabolismo , Crista Neural/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ret , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Estômago/citologia , Estômago/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA