Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1794, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413594

RESUMO

Ex vivo cellular system that accurately replicates sickle cell disease and ß-thalassemia characteristics is a highly sought-after goal in the field of erythroid biology. In this study, we present the generation of erythroid progenitor lines with sickle cell disease and ß-thalassemia mutation using CRISPR/Cas9. The disease cellular models exhibit similar differentiation profiles, globin expression and proteome dynamics as patient-derived hematopoietic stem/progenitor cells. Additionally, these cellular models recapitulate pathological conditions associated with both the diseases. Hydroxyurea and pomalidomide treatment enhanced fetal hemoglobin levels. Notably, we introduce a therapeutic strategy for the above diseases by recapitulating the HPFH3 genotype, which reactivates fetal hemoglobin levels and rescues the disease phenotypes, thus making these lines a valuable platform for studying and developing new therapeutic strategies. Altogether, we demonstrate our disease cellular systems are physiologically relevant and could prove to be indispensable tools for disease modeling, drug screenings and cell and gene therapy-based applications.


Assuntos
Anemia Falciforme , Talassemia beta , Humanos , Talassemia beta/genética , Talassemia beta/terapia , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Células-Tronco Hematopoéticas/metabolismo , Genótipo , Sistemas CRISPR-Cas
2.
Nucleic Acids Res ; 51(19): 10451-10466, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37697436

RESUMO

Melanin protects skin cells from ultraviolet radiation-induced DNA damage. However, intermediates of eumelanin are highly reactive quinones that are potentially genotoxic. In this study, we systematically investigate the effect of sustained elevation of melanogenesis and map the consequent cellular repair response of melanocytes. Pigmentation increases γH2AX foci, DNA abasic sites, causes replication stress and invokes translesion polymerase Polκ in primary human melanocytes, as well as mouse melanoma cells. Confirming the causal link, CRISPR-based genetic ablation of tyrosinase results in depigmented cells with low Polκ levels. During pigmentation, Polκ activates replication stress response and keeps a check on uncontrolled proliferation of cells harboring melanin-damaged DNA. The mutational landscape observed in human melanoma could in part explain the error-prone bypass of DNA lesions by Polκ, whose absence would lead to genome instability. Thereby, translesion polymerase Polκ is a critical response of pigmenting melanocytes to combat melanin-induced DNA alterations. Our study illuminates the dark side of melanin and identifies (eu)melanogenesis as a key missing link between tanning response and mutagenesis, mediated via the necessary evil translesion polymerase, Polκ.


Assuntos
DNA Polimerase Dirigida por DNA , Melanócitos , Melanoma , Animais , Humanos , Camundongos , Dano ao DNA , Reparo do DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Melaninas/genética , Melanócitos/metabolismo , Melanoma/genética , Pigmentação , Raios Ultravioleta/efeitos adversos
4.
PLoS Biol ; 20(5): e3001634, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35584084

RESUMO

Therapeutic methods to modulate skin pigmentation has important implications for skin cancer prevention and for treating cutaneous hyperpigmentary conditions. Towards defining new potential targets, we followed temporal dynamics of melanogenesis using a cell-autonomous pigmentation model. Our study elucidates 3 dominant phases of synchronized metabolic and transcriptional reprogramming. The melanogenic trigger is associated with high MITF levels along with rapid uptake of glucose. The transition to pigmented state is accompanied by increased glucose channelisation to anabolic pathways that support melanosome biogenesis. SREBF1-mediated up-regulation of fatty acid synthesis results in a transient accumulation of lipid droplets and enhancement of fatty acids oxidation through mitochondrial respiration. While this heightened bioenergetic activity is important to sustain melanogenesis, it impairs mitochondria lately, shifting the metabolism towards glycolysis. This recovery phase is accompanied by activation of the NRF2 detoxication pathway. Finally, we show that inhibitors of lipid metabolism can resolve hyperpigmentary conditions in a guinea pig UV-tanning model. Our study reveals rewiring of the metabolic circuit during melanogenesis, and fatty acid metabolism as a potential therapeutic target in a variety of cutaneous diseases manifesting hyperpigmentary phenotype.


Assuntos
Metabolismo dos Lipídeos , Melaninas , Pigmentação da Pele , Animais , Ácidos Graxos , Glucose , Cobaias , Melaninas/metabolismo
5.
J Vis Exp ; (181)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35312674

RESUMO

Melanocytes are specialized neural crest-derived cells present in the epidermal skin. These cells synthesize melanin pigment that protects the genome from harmful ultraviolet radiations. Perturbations in melanocyte functioning lead to pigmentary disorders such as piebaldism, albinism, vitiligo, melasma, and melanoma. Zebrafish is an excellent model system to understand melanocyte functions. The presence of conspicuous pigmented melanocytes, ease of genetic manipulation, and availability of transgenic fluorescent lines facilitate the study of pigmentation. This study employs the use of wild-type and transgenic zebrafish lines that drive green fluorescent protein (GFP) expression under mitfa and tyrp1 promoters that mark various stages of melanocytes. Morpholino-based silencing of candidate genes is achieved to evaluate the phenotypic outcome on larval pigmentation and is applicable to screen for regulators of pigmentation. This protocol demonstrates the method from microinjection to imaging and fluorescence-activated cell sorting (FACS)-based dissection of phenotypes using two candidate genes, carbonic anhydrase 14 (Ca14) and a histone variant (H2afv), to comprehensively assess the pigmentation outcome. Further, this protocol demonstrates segregating candidate genes into melanocyte specifiers and differentiators that selectively alter melanocyte numbers and melanin content per cell, respectively.


Assuntos
Transtornos da Pigmentação , Peixe-Zebra , Animais , Melanócitos/metabolismo , Pigmentação/genética , Genética Reversa , Peixe-Zebra/genética
6.
Cell Cycle ; 20(9): 903-913, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33870855

RESUMO

Differences in human phenotypes and susceptibility to complex diseases are an outcome of genetic and environmental interactions. This is evident in diseases that progress through a common set of intermediate patho-endophenotypes. Precision medicine aims to delineate molecular players for individualized and early interventions. Functional studies of lymphoblastoid cell line (LCL) model of phenotypically well-characterized healthy individuals can help deconvolute and validate these molecular mechanisms. In this study, LCLs are developed from eight healthy individuals belonging to three extreme constitution types, deep phenotyped on the basis of Ayurveda. LCLs were characterized by karyotyping and immunophenotyping. Growth characteristics and response to UV were studied in these LCLs. Significant differences in cell proliferation rates were observed between the contrasting groups such that one type (Kapha) proliferates significantly slower than the other two (Vata, Pitta). In response to UV, one of the fast growing groups (Vata) shows higher cell death but recovers its numbers due to an inherent higher rates of proliferation. This study reveals that baseline differences in cell proliferation could be a key to understanding the survivability of cells under UV stress. Variability in baseline cellular phenotypes not only explains the cellular basis of different constitution types but can also help set priors during the design of an individualized therapy with DNA damaging agents. This is the first study of its kind that shows variability of intermediate patho-phenotypes among healthy individuals with potential implications in precision medicine.


Assuntos
Linfócitos/citologia , Linfócitos/efeitos da radiação , Raios Ultravioleta , Biomarcadores/metabolismo , Ciclo Celular/efeitos da radiação , Linhagem Celular , Proliferação de Células/efeitos da radiação , Humanos , Antígeno Ki-67/metabolismo , Cinética , Fenótipo
7.
Development ; 147(5)2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32098766

RESUMO

In the neural crest lineage, progressive fate restriction and stem cell assignment are crucial for both development and regeneration. Whereas fate commitment events have distinct transcriptional footprints, fate biasing is often transitory and metastable, and is thought to be moulded by epigenetic programmes. Therefore, the molecular basis of specification is difficult to define. In this study, we established a role for a histone variant, H2a.z.2, in specification of the melanocyte lineage from multipotent neural crest cells. H2a.z.2 silencing reduces the number of melanocyte precursors in developing zebrafish embryos and from mouse embryonic stem cells in vitro We demonstrate that this histone variant occupies nucleosomes in the promoter of the key melanocyte determinant mitf, and enhances its induction. CRISPR/Cas9-based targeted mutagenesis of this gene in zebrafish drastically reduces adult melanocytes, as well as their regeneration. Thereby, our study establishes the role of a histone variant upstream of the core gene regulatory network in the neural crest lineage. This epigenetic mark is a key determinant of cell fate and facilitates gene activation by external instructive signals, thereby establishing melanocyte fate identity.


Assuntos
Células-Tronco Embrionárias/citologia , Histonas/genética , Melanócitos/citologia , Fator de Transcrição Associado à Microftalmia/genética , Crista Neural/citologia , Proteínas de Peixe-Zebra/genética , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Linhagem da Célula , Redes Reguladoras de Genes/genética , Melanoma Experimental , Camundongos , Peixe-Zebra/embriologia
8.
Nucleic Acids Res ; 47(11): 5852-5866, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31081026

RESUMO

Semi-autonomous functioning of mitochondria in eukaryotic cell necessitates coordination with nucleus. Several RNA species fine-tune mitochondrial processes by synchronizing with the nuclear program, however the involved components remain enigmatic. In this study, we identify a widely conserved dually localized protein Myg1, and establish its role as a 3'-5' RNA exonuclease. We employ mouse melanoma cells, and knockout of the Myg1 ortholog in Saccharomyces cerevisiae with complementation using human Myg1 to decipher the conserved role of Myg1 in selective RNA processing. Localization of Myg1 to nucleolus and mitochondrial matrix was studied through imaging and confirmed by sub-cellular fractionation studies. We developed Silexoseqencing, a methodology to map the RNAse trail at single-nucleotide resolution, and identified in situ cleavage by Myg1 on specific transcripts in the two organelles. In nucleolus, Myg1 processes pre-ribosomal RNA involved in ribosome assembly and alters cytoplasmic translation. In mitochondrial matrix, Myg1 processes 3'-termini of the mito-ribosomal and messenger RNAs and controls translation of mitochondrial proteins. We provide a molecular link to the possible involvement of Myg1 in chronic depigmenting disorder vitiligo. Our study identifies a key component involved in regulating spatially segregated organellar RNA processing and establishes the evolutionarily conserved ribonuclease as a coordinator of nucleo-mitochondrial crosstalk.


Assuntos
Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Endorribonucleases/metabolismo , Exonucleases/metabolismo , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biossíntese de Proteínas , Controle de Qualidade , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Vitiligo/genética
9.
EMBO J ; 37(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29311116

RESUMO

Endoplasmic reticulum (ER)-plasma membrane (PM) junctions form functionally active microdomains that connect intracellular and extracellular environments. While the key role of these interfaces in maintenance of intracellular Ca2+ levels has been uncovered in recent years, the functional significance of ER-PM junctions in non-excitable cells has remained unclear. Here, we show that the ER calcium sensor protein STIM1 (stromal interaction molecule 1) interacts with the plasma membrane-localized adenylyl cyclase 6 (ADCY6) to govern melanogenesis. The physiological stimulus α-melanocyte-stimulating hormone (αMSH) depletes ER Ca2+ stores, thus recruiting STIM1 to ER-PM junctions, which in turn activates ADCY6. Using zebrafish as a model system, we further established STIM1's significance in regulating pigmentation in vivo STIM1 domain deletion studies reveal the importance of Ser/Pro-rich C-terminal region in this interaction. This mechanism of cAMP generation creates a positive feedback loop, controlling the output of the classical αMSH-cAMP-MITF axis in melanocytes. Our study thus delineates a signaling module that couples two fundamental secondary messengers to drive pigmentation. Given the central role of calcium and cAMP signaling pathways, this module may be operative during various other physiological processes and pathological conditions.


Assuntos
Adenilil Ciclases/metabolismo , Sinalização do Cálcio/fisiologia , AMP Cíclico/metabolismo , Melanócitos/metabolismo , Pigmentação da Pele/genética , Molécula 1 de Interação Estromal/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Proliferação de Células/genética , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Perfilação da Expressão Gênica , Melanócitos/citologia , Camundongos , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Peixe-Zebra , alfa-MSH/metabolismo
10.
Autophagy ; 13(8): 1331-1347, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28598240

RESUMO

Macroautophagy/autophagy is a dynamic and inducible catabolic process that responds to a variety of hormonal and environmental cues. Recent studies highlight the interplay of this central pathway in a variety of pathophysiological diseases. Although defective autophagy is implicated in melanocyte proliferation and pigmentary disorders, the mechanistic relationship between the 2 pathways has not been elucidated. In this study, we show that autophagic proteins LC3B and ATG4B mediate melanosome trafficking on cytoskeletal tracks. While studying melanogenesis, we observed spatial segregation of LC3B-labeled melanosomes with preferential absence at the dendritic ends of melanocytes. This LC3B labeling of melanosomes did not impact the steady-state levels of these organelles but instead facilitated their intracellular positioning. Melanosomes primarily traverse on microtubule and actin cytoskeletal tracks and our studies reveal that LC3B enables the assembly of microtubule translocon complex. At the microtubule-actin crossover junction, ATG4B detaches LC3B from melanosomal membranes by enzymatic delipidation. Further, by live-imaging we show that melanosomes transferred to keratinocytes lack melanocyte-specific LC3B. Our study thus elucidates a new role for autophagy proteins in directing melanosome movement and reveal the unconventional use of these proteins in cellular trafficking pathways. Such crosstalk between the central cellular function and housekeeping pathway may be a crucial mechanism to balance melanocyte bioenergetics and homeostasis.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Cisteína Endopeptidases/metabolismo , Citoesqueleto/metabolismo , Melanossomas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Movimento , Citoesqueleto de Actina/metabolismo , Animais , Citoesqueleto/ultraestrutura , Dendritos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Queratinócitos/metabolismo , Lipídeos/química , Melanócitos/metabolismo , Melanócitos/ultraestrutura , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Melanoma Experimental/ultraestrutura , Melanossomas/ultraestrutura , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , Pigmentação
11.
Mol Ther ; 25(6): 1342-1352, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28366765

RESUMO

Topical delivery of nucleic acids to skin has huge prospects in developing therapeutic interventions for cutaneous disorders. In spite of initial success, clinical translation is vastly impeded by the constraints of bioavailability as well as stability in metabolically active environment of skin. Various physical and chemical methods used to overcome these limitations involve invasive procedures or compounds that compromise skin integrity. Hence, there is an increasing demand for developing safe skin penetration enhancers for efficient nucleic acid delivery to skin. Here, we demonstrate that pretreatment of skin with silicone oil can increase the transfection efficiency of non-covalently associated peptide-plasmid DNA nanocomplexes in skin ex vivo and in vivo. The method does not compromise skin integrity, as indicated by microscopic evaluation of cellular differentiation, tissue architecture, enzyme activity assessment, dye penetration tests using Franz assay, and cytotoxicity and immunogenicity analyses. Stability of nanocomplexes is not hampered on pretreatment, thereby avoiding nuclease-mediated degradation. The mechanistic insights through Fourier transform infrared (FTIR) spectroscopy reveal some alterations in the skin hydration status owing to possible occlusion effects of the enhancer. Overall, we describe a topical, non-invasive, efficient, and safe method that can be used to increase the penetration and delivery of plasmid DNA to skin for possible therapeutic applications.


Assuntos
Técnicas de Transferência de Genes , Ácidos Nucleicos , Óleos de Silicone , Pele/metabolismo , Administração Tópica , Animais , Linhagem Celular , Sobrevivência Celular , Peptídeos Penetradores de Células/metabolismo , Citocinas/metabolismo , Citometria de Fluxo , Expressão Gênica , Genes Reporter , Humanos , Camundongos , Nanopartículas , Ácidos Nucleicos/administração & dosagem , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , Permeabilidade , Plasmídeos/administração & dosagem , Plasmídeos/química , Plasmídeos/genética , Óleos de Silicone/química , Espectroscopia de Infravermelho com Transformada de Fourier , Transfecção
12.
Biomacromolecules ; 17(9): 2912-9, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27477067

RESUMO

Melanin and related polydopamine hold great promise; however, restricted fine-tunabilility limits their usefulness in biocompatible applications. In the present study, by taking a biomimetic approach, we synthesize peptide-derived melanin with a range of physicochemical properties. Characterization of these melanin polymers indicates that they exist as nanorange materials with distinct size distribution, shapes, and surface charges. These variants demonstrate similar absorption spectra but have different optical properties that correlate with particle size. Our approach enables incorporation of chemical groups to create functionalized polyvalent organic nanomaterials and enables customization of melanin. Further, we establish that these synthetic variants are efficiently taken up by the skin keratinocytes, display appreciable photoprotection with minimal cytotoxicity, and thereby function as effective color matched photoprotective agents. In effect we demonstrate that an array of functionalized melanins with distinct properties could be synthesized using bioinspired green chemistry, and these are of immense utility in generating customized melanin/polydopamine like materials.


Assuntos
Queratinócitos/metabolismo , Melaninas/química , Melaninas/fisiologia , Lesões por Radiação/prevenção & controle , Dermatopatias/prevenção & controle , Pele/metabolismo , Biomimética , Células Cultivadas , Cor , Humanos , Indóis/química , Queratinócitos/citologia , Queratinócitos/efeitos da radiação , Polímeros/química , Proteção Radiológica , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos
13.
Pigment Cell Melanoma Res ; 29(4): 465-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27124831

RESUMO

Vitiligo is a multifactorial acquired depigmenting disorder. Recent insights into the molecular mechanisms driving the gradual destruction of melanocytes in vitiligo will likely lead to the discovery of novel therapies, which need to be evaluated in animal models that closely recapitulate the pathogenesis of human vitiligo. In humans, vitiligo is characterized by a spontaneous loss of functional melanocytes from the epidermis, but most animal models of vitiligo are either inducible or genetically programmed. Here, we report that acquired depigmentation in water buffalo recapitulates molecular, histological, immunohistochemical, and ultrastructural changes observed in human vitiligo and hence could be used as a model to study vitiligo pathogenesis and facilitate the discovery and evaluation of therapeutic interventions for vitiligo.


Assuntos
Modelos Animais de Doenças , Epiderme/patologia , Melanócitos/patologia , Vitiligo/veterinária , Animais , Búfalos , Células Cultivadas , Feminino , Humanos , Vitiligo/patologia
14.
Nat Chem Biol ; 10(7): 542-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24937072

RESUMO

The recurrent interaction of skin with sunlight is an intrinsic constituent of human life, and exhibits both beneficial and detrimental effects. The apparent robust architectural framework of skin conceals remarkable mechanisms that operate at the interface between the surface and environment. In this Review, we discuss three distinct protective mechanisms and response pathways that safeguard skin from deleterious effects of ultraviolet (UV) radiation. The unique stratified epithelial architecture of human skin along with the antioxidant-response pathways constitutes the important defense mechanisms against UV radiation. The intricate pigmentary system and its intersection with the immune-system cytokine axis delicately balance tissue homeostasis. We discuss the relationship among these networks in the context of an unusual depigmenting disorder, vitiligo. The elaborate tunable mechanisms, elegant multilayered architecture and evolutionary selection pressures involved in skin and sunlight interaction makes this a compelling model to understand biological complexity.


Assuntos
Queratinócitos/metabolismo , Melaninas/metabolismo , Melanócitos/metabolismo , Melanossomas/metabolismo , Pele/metabolismo , Antioxidantes/metabolismo , Ceramidas/metabolismo , Expressão Gênica , Homeostase , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos da radiação , Melaninas/genética , Melanócitos/citologia , Melanócitos/efeitos da radiação , Melanossomas/efeitos da radiação , Fosfolipídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele/citologia , Pele/efeitos da radiação , Luz Solar , Raios Ultravioleta , Vitiligo/genética , Vitiligo/metabolismo , Vitiligo/patologia
15.
Proc Natl Acad Sci U S A ; 111(6): 2301-6, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24474804

RESUMO

Cellular homeostasis is an outcome of complex interacting processes with nonlinear feedbacks that can span distinct spatial and temporal dimensions. Skin tanning is one such dynamic response that maintains genome integrity of epidermal cells. Although pathways underlying hyperpigmentation cascade are recognized, negative feedback regulatory loops that can dampen the activated melanogenesis process are not completely understood. In this study, we delineate a regulatory role of IFN-γ in skin pigmentation biology. We show that IFN-γ signaling impedes maturation of the key organelle melanosome by concerted regulation of several pigmentation genes. Withdrawal of IFN-γ signal spontaneously restores normal cellular programming. This effect in melanocytes is mediated by IFN regulatory factor-1 and is not dependent on the central regulator microphthalmia-associated transcription factor. Chronic IFN-γ signaling shows a clear hypopigmentation phenotype in both mouse and human skin. Interestingly, IFN-γ KO mice display a delayed recovery response to restore basal state of epidermal pigmentation after UV-induced tanning. Together, our studies delineate a new spatiotemporal role of the IFN-γ signaling network in skin pigmentation homeostasis, which could have implications in various cutaneous depigmentary and malignant disorders.


Assuntos
Interferon gama/metabolismo , Melanócitos/citologia , Melanossomas/metabolismo , Transdução de Sinais , Pigmentação da Pele , Animais , Linhagem Celular Tumoral , Melanossomas/ultraestrutura , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Transcrição Gênica
16.
J Invest Dermatol ; 130(12): 2781-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20664557

RESUMO

Oxidative stress is widely believed to be a contributing factor in vitiligo pathogenesis. To explore mechanisms by which epidermis responds to mounting oxidative stress, we investigated the involvement of phase II detoxification genes in vitiligo. Phase II detoxification pathways have recently been identified as being important in the regulation of epidermal skin homeostasis. In this study we show that the key transcription factor nuclear factor E2-related factor 2 (Nrf2) and the downstream genes NAD(P)H:quinone oxidase-1 (NQO-1), γ-glutamyl cystine ligase catalytic subunit (GCLC), and γ-glutamyl cystine ligase modifying subunit (GCLM) are upregulated in the lesional epidermal skin of subjects with vitiligo vulgaris. The differences between lesional and nonlesional skin were further investigated by studying the induced expression of Nrf2-dependent transcripts in skin punch biopsies using curcumin and santalol. Surprisingly, nonlesional skin showed induction of all transcripts while a similar effect was not observed for the skin punches from the lesional skin. The use of curcumin and santalol on epidermal cells showed that keratinocytes were more susceptible to apoptosis, whereas melanocytes induced phase II genes under the same concentrations with negligible apoptosis. Our studies provide new insights into the role of phase II detoxification pathway in maintaining skin homeostasis and sustaining redox balance in vitiligo patients.


Assuntos
Epiderme/fisiologia , Desintoxicação Metabólica Fase II/fisiologia , Fator 2 Relacionado a NF-E2/genética , Vitiligo/genética , Vitiligo/fisiopatologia , Anti-Inflamatórios não Esteroides/farmacologia , Biópsia , Curcumina/farmacologia , Epiderme/metabolismo , Epiderme/patologia , Glutamato-Cisteína Ligase/genética , Homeostase/fisiologia , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/fisiologia , Melanócitos/efeitos dos fármacos , Melanócitos/fisiologia , NAD(P)H Desidrogenase (Quinona)/genética , Estresse Oxidativo/fisiologia , Sesquiterpenos Policíclicos , Sesquiterpenos/farmacologia , Ativação Transcricional/fisiologia , Regulação para Cima/fisiologia , Vitiligo/metabolismo
17.
Mol Cell Biol ; 29(19): 5277-89, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19620276

RESUMO

Increased activation of c-src seen in colorectal cancer is an indicator of a poor clinical prognosis, suggesting that identification of downstream effectors of c-src may lead to new avenues of therapy. Guanylyl cyclase C (GC-C) is a receptor for the gastrointestinal hormones guanylin and uroguanylin and the bacterial heat-stable enterotoxin. Though activation of GC-C by its ligands elevates intracellular cyclic GMP (cGMP) levels and inhibits cell proliferation, its persistent expression in colorectal carcinomas and occult metastases makes it a marker for malignancy. We show here that GC-C is a substrate for inhibitory phosphorylation by c-src, resulting in reduced ligand-mediated cGMP production. Consequently, active c-src in colonic cells can overcome GC-C-mediated control of the cell cycle. Furthermore, docking of the c-src SH2 domain to phosphorylated GC-C results in colocalization and further activation of c-src. We therefore propose a novel feed-forward mechanism of activation of c-src that is induced by cross talk between a receptor GC and a tyrosine kinase. Our findings have important implications in understanding the molecular mechanisms involved in the progression and treatment of colorectal cancer.


Assuntos
Neoplasias do Colo/metabolismo , Guanilato Ciclase/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores de Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteína Tirosina Quinase CSK , Ciclo Celular , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Progressão da Doença , Ativação Enzimática , Guanilato Ciclase/química , Guanilato Ciclase/genética , Humanos , Dados de Sequência Molecular , Fosforilação , Fosfotirosina/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Ratos , Ratos Wistar , Receptores de Enterotoxina , Receptores Acoplados a Guanilato Ciclase , Receptores de Peptídeos/química , Receptores de Peptídeos/genética , Alinhamento de Sequência , Quinases da Família src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA