Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Theory Biosci ; 143(3): 217-227, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39078560

RESUMO

The F1-ATPase enzyme is the smallest-known molecular motor that rotates in 120° steps, driven by the hydrolysis of ATP. It is a multi-subunit enzyme that contains three catalytic sites. A central question is how the elementary chemical reactions that occur in the three sites are coupled to mechanical rotation. Various models and coupling schemes have been formulated in an attempt to answer this question. They can be classified as 2-site (bi-site) models, exemplified by Boyer's binding change mechanism first proposed 50 years ago, and 3-site (tri-site) models such as Nath's torsional mechanism, first postulated 25 years ago and embellished 1 year back. Experimental data collated using diverse approaches have conclusively shown that steady-state ATP hydrolysis by F1-ATPase occurs in tri-site mode. Hence older models have been continually modified to make them conform to the new facts. Here, we have developed a pure mathematical approach based on combinatorics and conservation laws to test if proposed models are 2-site or 3-site. Based on this novel combinatorial approach, we have proved that older and modified models are effectively bi‒site models in that catalysis and rotation in F1-ATPase occurs in these models with only two catalytic sites occupied by bound nucleotide. Hence these models contradict consensus experimental data. The recent 2023 model of ATP hydrolysis by F1-ATPase has been proved to be a true tri-site model based on our novel mathematical approach. Such pure mathematical proofs constitute an important step forward for ATP mechanism. However, in what must be considered an aspect with great scientific potential, the power of such mathematical proofs has not been fully exploited to solve molecular biological problems, in our opinion. We believe that the creative application of pure mathematical proofs (for another example see Nath in Theory Biosci 141:249-260, 2022) can help resolve with finality various longstanding molecular-level issues that arise as a matter of course in the analysis of fundamental biological problems. Such issues have proved extraordinarily difficult to resolve by standard experimental, theoretical, or computational approaches.


Assuntos
Trifosfato de Adenosina , ATPases Translocadoras de Prótons , Hidrólise , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Domínio Catalítico , Cinética , Algoritmos , Catálise , Rotação , Sítios de Ligação , Modelos Moleculares
2.
Biosystems ; 242: 105255, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901165

RESUMO

In this last article of the trilogy, the unified biothermokinetic theory of ATP synthesis developed in the previous two papers is applied to a major problem in comparative physiology, biochemistry, and ecology-that of metabolic scaling as a function of body mass across species. A clear distinction is made between intraspecific and interspecific relationships in energy metabolism, clearing up confusion that had existed from the very beginning since Kleiber first proposed his mouse-to-elephant rule almost a century ago. It is shown that the overall mass exponent of basal/standard metabolic rate in the allometric relationship [Formula: see text] is composed of two parts, one emerging from the relative intraspecific constancy of the slope (b), and the other (b') arising from the interspecific variation of the mass coefficient, a(M) with body size. Quantitative analysis is shown to reveal the hidden underlying relationship followed by the interspecific mass coefficient, a(M)=P0M0.10, and a universal value of P0=3.23 watts, W is derived from empirical data on mammals from mouse to cattle. The above relationship is shown to be understood only within an evolutionary biological context, and provides a physiological explanation for Cope's rule. The analysis also helps in fundamentally understanding how variability and a diversity of scaling exponents arises in allometric relations in biology and ecology. Next, a molecular-level understanding of the scaling of metabolism across mammalian species is shown to be obtained by consideration of the thermodynamic efficiency of ATP synthesis η, taking mitochondrial proton leak as a major determinant of basal metabolic rate in biosystems. An iterative solution is obtained by solving the mathematical equations of the biothermokinetic ATP theory, and the key thermodynamic parameters, e.g. the degree of coupling q, the operative P/O ratio, and the metabolic efficiency of ATP synthesis η are quantitatively evaluated for mammals from rat to cattle. Increases in η (by ∼15%) over a 2000-fold body size range from rat to cattle, primarily arising from an ∼3-fold decrease in the mitochondrial H+ leak rate are quantified by the unified ATP theory. Biochemical and mechanistic consequences for the interpretation of basal metabolism, and the various molecular implications arising are discussed in detail. The results are extended to maximum metabolic rate, and interpreted mathematically as a limiting case of the general ATP theory. The limitations of the analysis are pointed out. In sum, a comprehensive quantitative analysis based on the unified biothermokinetic theory of ATP synthesis is shown to solve a central problem in biology, physiology, and ecology on the scaling of energy metabolism with body size.


Assuntos
Trifosfato de Adenosina , Metabolismo Energético , Mamíferos , Mitocôndrias , Termodinâmica , Animais , Trifosfato de Adenosina/metabolismo , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Mamíferos/metabolismo , Especificidade da Espécie , Camundongos , Tamanho Corporal/fisiologia , Modelos Biológicos , Bovinos
3.
Biosystems ; 240: 105228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735525

RESUMO

The nonequilibrium coupled processes of oxidation and ATP synthesis in the fundamental process of oxidative phosphorylation (OXPHOS) are of vital importance in biosystems. These coupled chemical reaction and transport bioenergetic processes using the OXPHOS pathway meet >90% of the ATP demand in aerobic systems. On the basis of experimentally determined thermodynamic OXPHOS flux-force relationships and biochemical data for the ternary system of oxidation, ion transport, and ATP synthesis, the Onsager phenomenological coefficients have been computed, including an estimate of error. A new biothermokinetic theory of energy coupling has been formulated and on its basis the thermodynamic parameters, such as the overall degree of coupling, q and the phenomenological stoichiometry, Z of the coupled system have been evaluated. The amount of ATP produced per oxygen consumed, i.e. the actual, operating P/O ratio in the biosystem, the thermodynamic efficiency of the coupled reactions, η, and the Gibbs free energy dissipation, Φ have been calculated and shown to be in agreement with experimental data. At the concentration gradients of ADP and ATP prevailing under state 3 physiological conditions of OXPHOS that yield Vmax rates of ATP synthesis, a maximum in Φ of ∼0.5J(hmgprotein)-1, corresponding to a thermodynamic efficiency of ∼60% for oxidation on succinate, has been obtained. Novel mechanistic insights arising from the above have been discussed. This is the first report of a 3 × 3 system of coupled chemical reactions with transport in a biological context in which the phenomenological coefficients have been evaluated from experimental data.


Assuntos
Trifosfato de Adenosina , Metabolismo Energético , Fosforilação Oxidativa , Termodinâmica , Trifosfato de Adenosina/metabolismo , Metabolismo Energético/fisiologia , Oxirredução , Modelos Biológicos , Cinética , Difosfato de Adenosina/metabolismo , Humanos
4.
Function (Oxf) ; 5(3): zqae008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706962

RESUMO

The Warburg Effect is a longstanding enigma in cancer biology. Despite the passage of 100 yr since its discovery, and the accumulation of a vast body of research on the subject, no convincing biochemical explanation has been given for the original observations of aerobic glycolysis in cancer cell metabolism. Here, we have worked out a first-principles quantitative analysis of the problem from the principles of stoichiometry and available electron balance. The results have been interpreted using Nath's unified theory of energy coupling and adenosine triphosphate (ATP) synthesis, and the original data of Warburg and colleagues have been analyzed from this new perspective. Use of the biomass yield based on ATP per unit substrate consumed, [Formula: see text], or the Nath-Warburg number, NaWa has been shown to excellently model the original data on the Warburg Effect with very small standard deviation values, and without employing additional fitted or adjustable parameters. Based on the results of the quantitative analysis, a novel conservative mechanism of synthesis, utilization, and recycling of ATP and other key metabolites (eg, lactate) is proposed. The mechanism offers fresh insights into metabolic symbiosis and coupling within and/or among proliferating cells. The fundamental understanding gained using our approach should help in catalyzing the development of more efficient metabolism-targeting anticancer drugs.


Assuntos
Trifosfato de Adenosina , Glicólise , Neoplasias , Efeito Warburg em Oncologia , Trifosfato de Adenosina/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Modelos Biológicos , Metabolismo Energético
5.
Biosystems ; 236: 105134, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301737

RESUMO

The nonequilibrium coupled processes of oxidation and ATP synthesis in the biological process of oxidative phosphorylation (OXPHOS) are fundamental to all life on our planet. These steady-state energy transduction processes ‒ coupled by proton and anion/counter-cation concentration gradients in the OXPHOS pathway ‒ generate ∼95 % of the ATP requirement of aerobic systems for cellular function. The rapid energy cycling and homeostasis of metabolites involved in this coupling are shown to be responsible for maintenance and regulation of stable nonequilibrium states, the latter first postulated in pioneering biothermodynamics work by Ervin Bauer between 1920 and 1935. How exactly does this occur? This is shown to be answered by molecular considerations arising from Nath's torsional mechanism of ATP synthesis and two-ion theory of energy coupling developed in 25 years of research work on the subject. A fresh analysis of the biological thermodynamics of coupling that goes beyond the previous work of Stucki and others and shows how the system functions at the molecular level has been carried out. Thermodynamic parameters, such as the overall degree of coupling, q of the coupled system are evaluated for the state 4 to state 3 transition in animal mitochondria with succinate as substrate. The actual or operative P to O ratio, the efficiency of the coupled reactions, η, and the Gibbs energy dissipation, Φ have been calculated and shown to be in good agreement with experimental data. Novel mechanistic insights arising from the above have been discussed. A fourth law/principle of thermodynamics is formulated for a sub-class of physical and biological systems. The critical importance of constraints and time-varying boundary conditions for function and regulation is discussed in detail. Dynamic internal structural changes essential for torsional energy storage within the γ-subunit in a single molecule of the FOF1-ATP synthase and its transduction have been highlighted. These results provide a molecular-level instantiation of Ervin Bauer's pioneering concepts in biological thermodynamics.


Assuntos
Trifosfato de Adenosina , Fosforilação Oxidativa , Animais , Trifosfato de Adenosina/metabolismo , Termodinâmica , Prótons , Física
6.
Molecules ; 28(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005208

RESUMO

The integration of phosphorus chemistry with the mechanism of ATP synthesis/hydrolysis requires dynamical information during ATP turnover and catalysis. Oxygen exchange reactions occurring at ß-catalytic sites of the FOF1-ATP synthase/F1-ATPase imprint a unique record of molecular events during the catalytic cycle of ATP synthesis/hydrolysis. They have been shown to provide valuable time-resolved information on enzyme catalysis during ATP synthesis and ATP hydrolysis. The present work conducts new experiments on oxygen exchange catalyzed by submitochondrial particles designed to (i) measure the relative rates of Pi-ATP, Pi-HOH, and ATP-HOH isotope exchanges; (ii) probe the effect of ADP removal on the extent of inhibition of the exchanges, and (iii) test their uncoupler sensitivity/resistance. The objectives have been realized based on new experiments on submitochondrial particles, which show that both the Pi-HOH and ATP-HOH exchanges occur at a considerably higher rate relative to the Pi-ATP exchange, an observation that cannot be explained by previous mechanisms. A unifying explanation of the kinetic data that rationalizes these observations is given. The experimental results in (ii) show that ADP removal does not inhibit the intermediate Pi-HOH exchange when ATP and submitochondrial particles are incubated, and that the nucleotide requirement of the intermediate Pi-HOH exchange is adequately met by ATP, but not by ADP. These results contradicts the central postulate in Boyer's binding change mechanism of reversible catalysis at a F1 catalytic site with Keq~1 that predicts an absolute requirement of ADP for the occurrence of the Pi-HOH exchange. The prominent intermediate Pi-HOH exchange occurring under hydrolytic conditions is shown to be best explained by Nath's torsional mechanism of energy transduction and ATP synthesis/hydrolysis, which postulates an essentially irreversible cleavage of ATP by mitochondria/particles, independent from a reversible formation of ATP from ADP and Pi. The explanation within the torsional mechanism is also shown to rationalize the relative insensitivity of the intermediate Pi-HOH exchange to uncouplers observed in the experiments in (iii) compared to the Pi-ATP and ATP-HOH exchanges. This is shown to lead to new concepts and perspectives based on ligand displacement/substitution and ligand permutation for the elucidation of the oxygen exchange reactions within the framework of fundamental phosphorus chemistry. Fast mechanisms that realize the rotation/twist, tilt, permutation and switch of ligands, as well as inversion at the γ-phosphorus synchronously and simultaneously and in a concerted manner, have been proposed, and their stereochemical consequences have been analyzed. These considerations take us beyond the binding change mechanism of ATP synthesis/hydrolysis in bioenergetics.


Assuntos
Fosforilação Oxidativa , Fósforo , Hidrólise , Ligantes , Trifosfato de Adenosina/metabolismo , Cinética , Oxigênio
7.
Biomolecules ; 13(11)2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-38002278

RESUMO

Oxygen exchange reactions occurring at ß-catalytic sites of the FOF1-ATP synthase/F1-ATPase imprint a unique record of molecular events during the catalytic cycle of ATP synthesis/hydrolysis. This work presents a new theory of oxygen exchange and tests it on oxygen exchange data recorded on ATP hydrolysis by mitochondrial F1-ATPase (MF1). The apparent rate constant of oxygen exchange governing the intermediate Pi-HOH exchange accompanying ATP hydrolysis is determined by kinetic analysis over a ~50,000-fold range of substrate ATP concentration (0.1-5000 µM) and a corresponding ~200-fold range of reaction velocity (3.5-650 [moles of Pi/{moles of F1-ATPase}-1 s-1]). Isotopomer distributions of [18O]Pi species containing 0, 1, 2, and 3 labeled oxygen atoms predicted by the theory have been quantified and shown to be in perfect agreement with the experimental distributions over the entire range of medium ATP concentrations without employing adjustable parameters. A novel molecular mechanism of steady-state multisite ATP hydrolysis by the F1-ATPase has been proposed. Our results show that steady-state ATP hydrolysis by F1-ATPase occurs with all three sites occupied by Mg-nucleotide. The various implications arising from models of energy coupling in ATP synthesis/hydrolysis by the ATP synthase/F1-ATPase have been discussed. Current models of ATP hydrolysis by F1-ATPase, including those postulated from single-molecule data, are shown to be effectively bisite models that contradict the data. The trisite catalysis formulated by Nath's torsional mechanism of energy transduction and ATP synthesis/hydrolysis since its first appearance 25 years ago is shown to be in better accord with the experimental record. The total biochemical information on ATP hydrolysis is integrated into a consistent model by the torsional mechanism of ATP synthesis/hydrolysis and shown to elucidate the elementary chemical and mechanical events within the black box of enzyme catalysis in energy metabolism by F1-ATPase.


Assuntos
Toupeiras , Animais , Cinética , Hidrólise , Toupeiras/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Catálise , Oxigênio/metabolismo
8.
Function (Oxf) ; 3(6): zqac054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340246

RESUMO

Traditionally, proposed molecular mechanisms of fundamental biological processes have been tested against experiment. However, owing to a plethora of reasons-difficulty in designing, carrying out, and interpreting key experiments, use of different experimental models and systems, conduct of studies under widely varying experimental conditions, fineness in distinctions between competing mechanisms, complexity of the scientific issues, and the resistance of some scientists to discoveries that are contrary to popularly held beliefs-this has not solved the problem despite decades of work in the field/s. The author would like to prescribe an alternative way: that of testing competing models/mechanisms for their adherence to scientific laws and principles, and checking for errors in logic. Such tests are fairly commonly carried out in the mathematics, physics, and engineering literature. Further, reported experimental measurements should not be smaller than minimum detectable values for the measurement technique employed and should truly reflect function of the actual system without inapplicable extrapolation. Progress in the biological fields would be greatly accelerated, and considerable scientific acrimony avoided by adopting this approach. Some examples from the fundamental field of ATP synthesis in oxidative phosphorylation (OXPHOS) have been reviewed that also serve to illustrate the approach. The approach has never let the author down in his 35-yr-long experience on biological mechanisms. This change in thinking should lead to a considerable saving of both time and resources, help channel research efforts toward solution of the right problems, and hopefully provide new vistas to a younger generation of open-minded biological scientists.


Assuntos
Trifosfato de Adenosina , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Modelos Teóricos , Lógica
9.
Biomol Concepts ; 13(1): 272-288, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35617665

RESUMO

Following structural determination by recent advances in electron cryomicroscopy, it is now well established that the respiratory Complexes I-IV in oxidative phosphorylation (OXPHOS) are organized into supercomplexes in the respirasome. Nonetheless, the reason for the existence of the OXPHOS supercomplexes and their functional role remains an enigma. Several hypotheses have been proposed for the existence of these supercomplex supercomplexes. A commonly-held view asserts that they enhance catalysis by substrate channeling. However, this - and other views - has been challenged based on structural and biophysical information. Hence, new ideas, concepts, and frameworks are needed. Here, a new model of energy transfer in OXPHOS is developed on the basis of biochemical data on the pure competitive inhibition of anionic substrates like succinate by the classical anionic uncouplers of OXPHOS (2,4-dinitrophenol, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, and dicoumarol), and pharmacological data on the unique site-selective, energy-linked inhibition of energy conservation pathways in mitochondria induced by the guanidine derivatives. It is further found that uncouplers themselves are site-specific and exhibit differential selectivity and efficacy in reversing the inhibition caused by the Site 1/Complex I or Site 2/Complexes II-III-selective guanidine derivatives. These results lead to new vistas and sufficient complexity in the network of energy conservation pathways in the mitochondrial respiratory chain that necessitate discrete points of interaction with two classes of guanidine derivatives and uncoupling agents and thereby separate and distinct energy transfer pathways between Site 1 and Site 2 and the intermediate that energizes adenosine triphosphate (ATP) synthesis by Complex V. Interpretation based on Mitchell's single-ion chemiosmotic theory that postulates only a single energy pool is inadequate to rationalize the data and account for the required complexity. The above results and available information are shown to be explained by Nath's two-ion theory of energy coupling and ATP synthesis, involving coupled movement of succinate anions and protons, along with the requirement postulated by the theory for maintenance of homeostasis and ion translocation across the energy-transducing membrane of both succinate monoanions and succinate dianions by Complexes I-V in the OXPHOS supercomplexes. The new model of energy transfer in mitochondria is mapped onto the solved structures of the supercomplexes and integrated into a consistent model with the three-dimensional electron microscope computer tomography visualization of the internal structure of the cristae membranes in mammalian mitochondria. The model also offers valuable insights into diseased states induced in type 2 diabetes and especially in Alzheimer's and other neurodegenerative diseases that involve mitochondrial dysfunction.


Assuntos
Diabetes Mellitus Tipo 2 , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Animais , Guanidinas , Mamíferos/metabolismo , Succinatos
10.
Theory Biosci ; 141(3): 249-260, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35499671

RESUMO

Mechanisms coupling the chemical reactions of oxidation and ATP synthesis in cellular metabolism by the fundamental biological process of oxidative phosphorylation (OX PHOS) in mitochondria provide > 90% of the energy requirements in living organisms. Mathematical graph theory methods have been extensively used to characterize various metabolic, regulatory, and disease networks in biology. However, networks of energy coupling mechanisms in OX PHOS have not been represented and analyzed previously by these approaches. Here, the problem of biological energy coupling is translated into a graph-theoretical framework, and all possible coupling schemes between oxidation and ATP synthesis are represented as graphs connecting these processes by various intermediates or states. The problem is shown to be transformed into the hard problem of finding a Hamiltonian tour in the networks of possible constituent mechanisms, given the constraints of a cyclical nature of operation of enzymes and biological molecular machines. Accessible mathematical proofs of three theorems that guarantee sufficient conditions for the existence of a Hamiltonian cycle in simple graphs are provided. The results of the general theorems are applied to the set of possible coupling mechanisms in OX PHOS and shown to (1) unequivocally differentiate between the major theories and mechanisms of energy coupling, (2) greatly reduce the possibilities for detailed consideration, and (3) deduce the biologically selected mechanism using additional constraints from the cumulative experimental record. Finally, an algorithm is constructed to implement the graph-theoretical procedure. In summary, the enormous power and generality of mathematical theorems and approaches in graph theory are shown to help solve a fundamental problem in biology.


Assuntos
Trifosfato de Adenosina , Fosforilação Oxidativa , Trifosfato de Adenosina/química , Metabolismo Energético , Mitocôndrias/metabolismo , Fenômenos Físicos , Termodinâmica
12.
J Biol Phys ; 47(4): 401-433, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34792702

RESUMO

The dynamics of ion translocation through membrane transporters is visualized from a comprehensive point of view by a Gibbs energy landscape approach. The ΔG calculations have been performed with the Kirkwood-Tanford-Warshel (KTW) electrostatic theory that properly takes into account the self-energies of the ions. The Gibbs energy landscapes for translocation of a single charge and an ion pair are calculated, compared, and contrasted as a function of the order parameter, and the characteristics of the frustrated system with bistability for the ion pair are described and quantified in considerable detail. These calculations have been compared with experimental data on the ΔG of ion pairs in proteins. It is shown that, under suitable conditions, the adverse Gibbs energy barrier can be almost completely compensated by the sum of the electrostatic energy of the charge-charge interactions and the solvation energy of the ion pair. The maxima in ΔGKTW with interionic distance in the bound H+ - A- charge pair on the enzyme is interpreted in thermodynamic and molecular mechanistic terms, and biological implications for molecular mechanisms of ATP synthesis are discussed. The timescale at which the order parameter moves between two stable states has been estimated by solving the dynamical equations of motion, and a wealth of novel insights into energy transduction during ATP synthesis by the membrane-bound FOF1-ATP synthase transporter is offered. In summary, a unifying analytical framework that integrates physics, chemistry, and biology has been developed for ion translocation by membrane transporters for the first time by means of a Gibbs energy landscape approach.


Assuntos
Trifosfato de Adenosina , Proteínas de Membrana Transportadoras , Biologia , Íons , Física , Termodinâmica
13.
Biophys Chem ; 272: 106579, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33773332

RESUMO

Recently, an exchange of views on key fundamental aspects of biological energy coupling and ATP synthesis in the vital process of oxidative phosphorylation appeared in the pages of this journal. The very difficult scientific problems are analyzed and clarified. Errors in the mathematical/thermodynamic equations of a previous analysis have been identified that invalidate previous assertions, and the correct equations are derived. The major differences between the two competing models - localized versus delocalized - for biological energy coupling and transduction are discussed from physical, chemical, and mathematical perspectives. The opposing views are summarized, so that the reader can assess for himself or herself the merits of the two coupling mechanisms. A fresh attempt has been made to go to the root of bioenergetics by calculating the desolvation free energy barrier, ∆Gdesolvation for ion transport across biomembranes. Several constructive suggestions are made that have the power to resolve the basic contradictions and the areas of fundamental conflict, and reach a consensus by catalyzing the progress of future research in this interdisciplinary field.


Assuntos
Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/química , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
14.
Biophys Chem ; 268: 106496, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160142

RESUMO

In a recent paper entitled "Chemiosmotic misunderstandings", it is claimed that "enough shortcomings in Mitchell's chemiosmotic theory have not been found and that a novel paradigm that offers at least as much explanatory power as chemiosmosis is not ready." This view is refuted by a wealth of molecular-level experimental data and strong new theoretical and computational evidence. It is shown that the chemiosmotic theory was beset with a large number of major shortcomings ever since the time when it was first proposed in the 1960s. These multiple shortcomings and flaws of chemiosmosis were repeatedly pointed out in incisive critiques by biochemical authorities of the late 20th century. All the shortcomings and flaws have been shown to be rectified by a quantitative, unified molecular-level theory that leads to a deeper and far more accurate understanding of biological energy coupling and ATP synthesis. The new theory is shown to be consistent with pioneering X-ray and cryo-EM structures and validated by state-of-the-art single-molecule techniques. Several new biochemical experimental tests are proposed and constructive ways for providing a revitalizing conceptual background and theory for integration of the available experimental information are suggested.


Assuntos
Metabolismo Energético , Osmose , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Modelos Biológicos , Fosforilação Oxidativa , Fotossíntese , Eletricidade Estática
15.
Biomol Concepts ; 11(1): 143-152, 2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32827389

RESUMO

The mitochondrial permeability transition (MPT) has been one of the longstanding enigmas in biology. Its cause is currently at the center of an extensive scientific debate, and several hypotheses on its molecular nature have been put forward. The present view holds that the transition arises from the opening of a high-conductance channel in the energy-transducing membrane, the permeability transition pore (PTP), also called the mitochondrial megachannel or the multiconductance channel (MMC). Here, the novel hypothesis is proposed that the aqueous access channels at the interface of the c-ring and the a-subunit of FO in the FOF1-ATP synthase are repurposed during induction of apoptosis and constitute the elusive PTP/ MMC. A unifying principle based on regulation by local potentials is advanced to rationalize the action of the myriad structurally and chemically diverse inducers and inhibitors of PTP/MMC. Experimental evidence in favor of the hypothesis and its differences from current models of PTP/MMC are summarized. The hypothesis explains in considerable detail how the binding of Ca2+ to a ß-catalytic site (site 3) in the F1 portion of ATP synthase triggers the opening of the PTP/MMC. It is also shown to connect to longstanding proposals within Nath's torsional mechanism of energy transduction and ATP synthesis as to how the binding of MgADP to site 3 does not induce PTP/MMC, but instead catalyzes physiological ATP synthesis in cell life. In the author's knowledge, this is the first model that explains how Ca2+ transforms the FOF1-ATP synthase from an exquisite energy-conserving enzyme in cell life into an energy-dissipating structure that promotes cell death. This has major implications for basic as well as for clinical research, such as for the development of drugs that target the MPT, given the established role of PTP/MMC dysregulation in cancer, ischemia, cardiac hypertrophy, and various neurodegenerative diseases.


Assuntos
Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Trifosfato de Adenosina/metabolismo , Apoptose , Cálcio/metabolismo , Domínio Catalítico , Morte Celular , Humanos
16.
J Phys Chem B ; 124(25): 5139-5148, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32484674

RESUMO

Techniques to probe molecular mechanistic events occurring at a single catalytic site of multi-subunit enzymes in real time are few and are still under development. Here time-resolved information is extracted from measurements of the extensive oxygen exchange that occurs at an intermediate stage of adenosine triphosphate (ATP) synthesis during photophosphorylation by chloroplast thylakoids. A stochastic process-based approach for modeling exchange reactions is formulated that provides a physical basis for the kinetic theory. Compatible with the assumptions made in such a model of randomness, the formulation is shown to lead to a Poisson-type theory that enables kinetic analysis of oxygen-exchange data and offers novel physical insights. Parameters such as the apparent rate constant of exchange and the average lifetime of the exchanging intermediates during the synthesis of ATP by the chloroplast F1FO-ATP synthase have been determined over a 5000-fold range of ADP concentration. Experimental isotopomer distributions of [18O]ATP at high (0.5 mM), intermediate (10 µM), and low (0.2 µM) ADP concentrations have been quantified and compared to expected distributions from the theory. The observed distributions are shown to closely match the predicted distributions. A wealth of novel mechanistic insights such as the number of sites/pathways of oxygen exchange, the order of substrate binding steps at the enzyme catalytic site, and regulation of the process of energy coupling have been deduced, and the results are interpreted with the help of available high-resolution X-ray structures. The various biological implications for models of energy coupling have been discussed. Permutation of oxygen ligands about the phosphorus center is proposed as a possible and general but not well-recognized mechanism for oxygen exchange that is consistent with the principal results of this work, and several suggestions for future research are offered.


Assuntos
Trifosfato de Adenosina , Fotofosforilação , Trifosfato de Adenosina/metabolismo , Catálise , Cinética , Oxigênio
17.
Biophys Chem ; 257: 106279, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31757522

RESUMO

In a recent publication, Manoj raises criticisms against consensus views on the ATP synthase. The radical statements and assertions are shown to contradict a vast body of available knowledge that includes i) pioneering single-molecule biochemical and biophysical studies from the respected experimental groups of Kinosita, Yoshida, Noji, Börsch, Dunn, Gräber, Frasch, and Dimroth etc., ii) state-of-the-art X-ray and EM/cryo-EM structural information garnered over the decades by the expert groups of Leslie-Walker, Kühlbrandt, Mueller, Meier, Rubinstein, Sazanov, Duncan, and Pedersen on ATP synthase, iii) the pioneering energy-based computer simulations of Warshel, and iv) the novel theoretical and experimental works of Nath. Valid objections against Mitchell's chemiosmotic theory and Boyer's binding change mechanism put forth by Manoj have been addressed satisfactorily by Nath's torsional mechanism of ATP synthesis and two-ion theory of energy coupling and published 10 to 20 years ago, but these papers are not cited by him. This communication shows conclusively and in great detail that none of his objections apply to Nath's mechanism/theory. Nath's theory is further consolidated based on its previous predictive record, its consistency with biochemical evidence, its unified nature, its application to other related energy transductions and to disease, and finally its ability to guide the design of new experiments. Some constructive suggestions for high-resolution structural experiments that have the power to delve into the heart of the matter and throw unprecedented light on the nature of coupled ion translocation in the membrane-bound FO portion of F1FO-ATP synthase are made.


Assuntos
Fosforilação Oxidativa , Fotofosforilação , Trifosfato de Adenosina , Termodinâmica
18.
Biophys Chem ; 255: 106271, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31670160

RESUMO

Adenosine triphosphate (ATP) is the universal biological energy fuel, or nature's gasoline. The vast quantities of ATP required for sustenance of living processes in cells are synthesized by oxidative phosphorylation and photosynthesis. The chemiosmotic theory of energy coupling was proposed by Mitchell more than 50 years ago but has a contentious history. Part of the accumulated body of experimental evidence supports Mitchell's theory, and part of the evidence conflicts with the theory. Although Mitchell's theory was strongly criticized by several prominent scientists, the controversy was never resolved. Certain theoretical arguments and electrostatic calculations were originally made to justify the central tenet of the chemiosmotic theory of electrogenic proton transfer and violation of electrical neutrality in bulk aqueous phases by creation of a delocalized field. However, these calculations have not been scientifically scrutinized previously. Here it is proved from first principles that the original physical arguments and calculations made in support of steady state electrogenic ion transfer and chemiosmosis violate Gauss's law. Nath's two-ion theory of energy coupling in which the field is local, and ion translocation is dynamically electrogenic but overall electroneutral is shown to satisfactorily resolve the difficulties. Characterization of length scales in mitochondrial systems is shown to impose strong constraints on possible mechanisms of energy transduction. Some biological implications for energy coupling, transduction and ATP synthesis arising as a result of the above analysis are discussed. Examples of several other biological processes where the new theory is useful such as apoptosis, muscle contraction, the joint multisite regulation of oxidative phosphorylation and the Krebs cycle, and hindered protein aggregation arising from ATP's hydrotropic properties are outlined.


Assuntos
Trifosfato de Adenosina/metabolismo , Modelos Moleculares , Íons/química , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Contração Muscular , Teoria Quântica , Termodinâmica
19.
Biophys Chem ; 252: 106208, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31238246

RESUMO

The central aspects of the energy economics of living cells revolve around the synthesis and utilization of molecules of adenosine triphosphate (ATP). Current descriptions of cell metabolism and its regulation in most textbooks of biochemistry assume that enzymes and transporters behave in the same way in isolation and in a cell. Calculations of the mechanistic or maximal P/O ratios in oxidative phosphorylation by mammalian cells generally consider only the supply side of the problem without linking to ATP-demand processes. The purpose of this article is to calculate the mechanistic P/O ratio by integration of the supply and demand sides of ATP reactions. The mechanistic stoichiometry calculated from an integrated approach is compared with that obtained from the standard model that considers only ATP supply. After accounting for leaks, slips, and other losses, the actual or operative P/O calculated by the integrated method is found to be in good agreement with the experimental values of the P/O ratio determined in mitochondria for both succinate and NADH-linked respiratory substrates. The thermodynamic consequences of these results and the biological implications are discussed. An integrated model of oxidative phosphorylation that goes beyond the chemiosmotic theory is presented, and a solution to the longstanding fundamental problem of respiratory control is found.


Assuntos
Trifosfato de Adenosina/metabolismo , Respiração Celular , Fosforilação Oxidativa , Trifosfato de Adenosina/química , Animais , Humanos , Mitocôndrias/química , Mitocôndrias/metabolismo , Termodinâmica
20.
Bioeng Transl Med ; 4(1): 164-170, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30680327

RESUMO

Tuberculosis (TB) claims the lives of 1.3 million people each year, more than any other bacterial infection. Hence great interest was generated in health communities upon the recent introduction of the new diarylquinoline anti-TB drug, bedaquiline. Bedaquiline acts by binding to the c-subunit in the membrane-bound FO portion of the F1FO-adenosine triphosphate (ATP) synthase, the universal enzyme that produces the ATP needed by cells. However, the mechanism of killing by bedaquiline is not fully understood. Recent observations related to the bactericidal effects of bedaquiline, which show that it is a potent uncoupler of respiration-driven ATP synthesis in Mycobacterium smegmatis are summarized. These observations are then interpreted from the standpoint of Nath's two-ion theory of energy coupling in ATP synthesis (Nath, Biophys. Chem. 2017; 230:45-52). Especial importance is given to the interpretation of biochemical fluorescence quenching data, and the differences between the uncoupling induced by bedaquiline from that by the classical anionic uncouplers of oxidative phosphorylation are highlighted. Suggestions for new experiments that could lead to a better understanding of the uncoupling mechanism are made. A model of uncoupling action by the drug is presented, and the biochemical basis underlying uncoupling of ATP synthesis and lethality in mycobacteria is elucidated. The major biological implications arising from these novel insights are discussed. It is hoped that the analysis will lead to a more fundamental understanding of biological energy coupling, uncoupling and transduction, and to an integrated view for the design of novel antimicrobials by future research in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA