Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Appl Clin Med Phys ; 25(8): e14410, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810092

RESUMO

PURPOSE: The purpose of this study is to characterize the dosimetric properties of a commercial brass GRID collimator for high energy photon beams including 15 and 10 MV. Then, the difference in dosimetric parameters of GRID beams among different energies and linacs was evaluated. METHOD: A water tank scanning system was used to acquire the dosimetric parameters, including the percentage depth dose (PDD), beam profiles, peak to valley dose ratios (PVDRs), and output factors (OFs). The profiles at various depths were measured at 100 cm source to surface distance (SSD), and field sizes of 10 × 10 cm2 and 20 × 20 cm2 on three linacs. The PVDRs and OFs were measured and compared with the treatment planning system (TPS) calculations. RESULTS: Compared with the open beam data, there were noticeable changes in PDDs of GRID fields across all the energies. The GRID fields demonstrated a maximal of 3 mm shift in dmax (Truebeam STX, 15MV, 10 × 10 cm2). The PVDR decreased as beam energy increases. The difference in PVDRs between Trilogy and Truebeam STx using 6MV and 15MV was 1.5% ± 4.0% and 2.1% ± 4.3%, respectively. However, two Truebeam linacs demonstrated less than 2% difference in PVDRs. The OF of the GRID field was dependent on the energy and field size. The measured PDDs, PVDRs, and OFs agreed with the TPS calculations within 3% difference. The TPS calculations agreed with the measurements when using 1 mm calculation resolution. CONCLUSION: The dosimetric characteristics of high-energy GRID fields, especially PVDR, significantly differ from those of low-energy GRID fields. Two Truebeam machines are interchangeable for GRID therapy, while a pronounced difference was observed between Truebeam and Trilogy. A series of empirical equations and reference look-up tables for GRID therapy can be generated to facilitate clinical applications.


Assuntos
Neoplasias , Aceleradores de Partículas , Fótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Aceleradores de Partículas/instrumentação , Radiometria/métodos , Radiometria/instrumentação , Neoplasias/radioterapia , Radioterapia de Intensidade Modulada/métodos , Imagens de Fantasmas , Fracionamento da Dose de Radiação , Método de Monte Carlo
2.
Chin Clin Oncol ; 12(5): 56, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37964545

RESUMO

High doses of radiation to the hippocampus have been correlated with increased cognitive decline following radiation therapy for brain metastases. To mitigate these effects, a variety of hippocampal sparing techniques have been implemented for both whole brain radiation therapy (WBRT) and stereotactic radiosurgery (SRS). The goal of this review article is to provide a practical resource for the clinical implementation of hippocampal-sparing radiation therapy, starting with a brief background on the function and delineation of the hippocampal structure, as well as radiation effects on the hippocampus and the most widely recommended dose constraints. Considerations for treatment simulation are discussed, including options for cranial immobilization and optional head tilt. Hippocampal sparing has been demonstrated for WBRT using helical TomoTherapy, static intensity-modulated radiation therapy (IMRT), and volumetric-modulated arc therapy (VMAT) with a variety of patient setup positions, beam arrangements, and planning parameters. Tomotherapy has been shown to achieve slightly greater hippocampal sparing in some studies, while VMAT enables the most efficient treatment delivery. Hippocampal sparing has also been evaluated in a wide range of studies for both GammaKnife and linear accelerator (LINAC)-based SRS, with the proximity of metastases to the hippocampus being the most significant predictor of hippocampal dose. The methods and resulting hippocampal doses from these studies on both WBRT and SRS are discussed, as well as the role of automation in hippocampal sparing radiation therapy.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Irradiação Craniana/métodos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Radioterapia de Intensidade Modulada/métodos , Hipocampo/efeitos da radiação
3.
Magn Reson Med ; 79(1): 370-382, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28419582

RESUMO

PURPOSE: The diagnostic gold standard for nonalcoholic fatty liver disease is an invasive biopsy. Noninvasive Cartesian MRI fat quantification remains limited to a breath-hold (BH). In this work, a novel free-breathing 3D stack-of-radial (FB radial) liver fat quantification technique is developed and evaluated in a preliminary study. METHODS: Phantoms and healthy subjects (n = 11) were imaged at 3 Tesla. The proton-density fat fraction (PDFF) determined using FB radial (with and without scan acceleration) was compared to BH single-voxel MR spectroscopy (SVS) and BH 3D Cartesian MRI using linear regression (correlation coefficient ρ and concordance coefficient ρc ) and Bland-Altman analysis. RESULTS: In phantoms, PDFF showed significant correlation (ρ > 0.998, ρc > 0.995) and absolute mean differences < 2.2% between FB radial and BH SVS, as well as significant correlation (ρ > 0.999, ρc > 0.998) and absolute mean differences < 0.6% between FB radial and BH Cartesian. In the liver and abdomen, PDFF showed significant correlation (ρ > 0.986, ρc > 0.985) and absolute mean differences < 1% between FB radial and BH SVS, as well as significant correlation (ρ > 0.996, ρc > 0.995) and absolute mean differences < 0.9% between FB radial and BH Cartesian. CONCLUSION: Accurate 3D liver fat quantification can be performed in 1 to 2 min using a novel FB radial technique. Magn Reson Med 79:370-382, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional/métodos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Algoritmos , Calibragem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Fígado/patologia , Masculino , Modelos Estatísticos , Hepatopatia Gordurosa não Alcoólica/patologia , Pelve/diagnóstico por imagem , Imagens de Fantasmas , Valores de Referência , Respiração
4.
Magn Reson Med ; 79(5): 2511-2523, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28944490

RESUMO

PURPOSE: Treatments using high-intensity focused ultrasound (HIFU) in the abdominal region remain challenging as a result of respiratory organ motion. A novel method is described here to achieve 3D motion-compensated ultrasound (US) MR-guided HIFU therapy using simultaneous ultrasound and MRI. METHODS: A truly hybrid US-MR-guided HIFU method was used to plan and control the treatment. Two-dimensional ultrasound was used in real time to enable tracking of the motion in the coronal plane, whereas an MR pencil-beam navigator was used to detect anterior-posterior motion. Prospective motion compensation of proton resonance frequency shift (PRFS) thermometry and HIFU electronic beam steering were achieved. RESULTS: The 3D prospective motion-corrected PRFS temperature maps showed reduced intrascan ghosting artifacts, a high signal-to-noise ratio, and low geometric distortion. The k-space data yielded a consistent temperature-dependent PRFS effect, matching the gold standard thermometry within approximately 1°C. The maximum in-plane temperature elevation ex vivo was improved by a factor of 2. Baseline thermometry acquired in volunteers indicated reduction of residual motion, together with an accuracy/precision of near-harmonic referenceless PRFS thermometry on the order of 0.5/1.0°C. CONCLUSIONS: Hybrid US-MR-guided HIFU ablation with 3D motion compensation was demonstrated ex vivo together with a stable referenceless PRFS thermometry baseline in healthy volunteer liver acquisitions. Magn Reson Med 79:2511-2523, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Cirurgia Assistida por Computador/métodos , Adulto , Algoritmos , Animais , Bovinos , Feminino , Humanos , Fígado/diagnóstico por imagem , Fígado/cirurgia , Masculino , Termometria/métodos
5.
J Neurooncol ; 112(2): 257-66, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23344788

RESUMO

Fluid attenuated inversion recovery (FLAIR) MRI sequences have become an indispensible tool for defining the malignant boundary in patients with brain tumors by nulling the signal contribution from cerebrospinal fluid allowing both regions of edema and regions of non-enhancing, infiltrating tumor to become hyperintense on resulting images. In the current study we examined the utility of a three-dimensional double inversion recovery (DIR) sequence that additionally nulls the MR signal associated with white matter, implemented either pre-contrast or post-contrast, in order to determine whether this sequence allows for better differentiation between tumor and normal brain tissue. T1- and T2-weighted, FLAIR, dynamic susceptibility contrast (DSC)-MRI estimates of cerebral blood volume (rCBV), contrast-enhanced T1-weighted images (T1+C), and DIR data (pre- or post-contrast) were acquired in 22 patients with glioblastoma. Contrast-to-noise (CNR) and tumor volumes were compared between DIR and FLAIR sequences. Line profiles across regions of tumor were generated to evaluate similarities between image contrasts. Additionally, voxel-wise associations between DIR and other sequences were examined. Results suggested post-contrast DIR images were hyperintense (bright) in regions spatially similar those having FLAIR hyperintensity and hypointense (dark) in regions with contrast-enhancement or elevated rCBV due to the high sensitivity of 3D turbo spin echo sequences to susceptibility differences between different tissues. DIR tumor volumes were statistically smaller than tumor volumes as defined by FLAIR (Paired t test, P = 0.0084), averaging a difference of approximately 14 mL or 24 %. DIR images had approximately 1.5× higher lesion CNR compared with FLAIR images (Paired t test, P = 0.0048). Line profiles across tumor regions and scatter plots of voxel-wise coherence between different contrasts confirmed a positive correlation between DIR and FLAIR signal intensity and a negative correlation between DIR and both post-contrast T1-weighted image signal intensity and rCBV. Additional discrepancies between FLAIR and DIR abnormal regions were also observed, together suggesting DIR may provide additional information beyond that of FLAIR.


Assuntos
Neoplasias Encefálicas/patologia , Meios de Contraste , Glioblastoma/patologia , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Recidiva Local de Neoplasia/patologia , Progressão da Doença , Humanos , Aumento da Imagem , Processamento de Imagem Assistida por Computador , Prognóstico
6.
Biol Psychiatry ; 61(11): 1272-80, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17097074

RESUMO

BACKGROUND: Methamphetamine abuse is associated with neurotoxicity to frontostriatal brain regions with concomitant deleterious effects on cognitive processes. METHODS: By using a computerized measure of selective attention and single-voxel proton magnetic resonance spectroscopy, we examined the relationship between attentional control and brain metabolite levels in the anterior cingulate cortex (ACC) and primary visual cortex (PVC) in 36 currently abstinent methamphetamine abusers and 16 non-substance-using controls. RESULTS: The methamphetamine abusers exhibited reduced attentional control (i.e., increased Stroop interference) compared with the controls (p = .04). Bonferroni-adjusted comparisons revealed that ACC levels of N-acetyl aspartate (NAA)-creatine and phosphocreatine (Cr) were lower and that levels of choline (Cho)-NAA were higher in the methamphetamine abusers compared with the controls, at the adjusted p value of .0125. Levels of NAA-Cr, but not of Cho-NAA, within the ACC correlated with measures of attentional control in the methamphetamine abusers (r = -.41; p = .01) but not in controls (r = .22; p = .42). No significant correlations were observed in the PVC (methamphetamine abusers, r = .19; p = .28, controls, r = .38; p = .15). CONCLUSIONS: Changes in neurochemicals within frontostriatal brain regions including ACC may contribute to deficits in attentional control among chronic methamphetamine abusers.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Transtornos Relacionados ao Uso de Anfetaminas/psicologia , Atenção/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central , Metanfetamina , Adulto , Colina/metabolismo , Cognição/fisiologia , Creatina/metabolismo , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Testes Neuropsicológicos , Estimulação Luminosa , Desempenho Psicomotor/efeitos dos fármacos , Tempo de Reação/fisiologia , Fumar/metabolismo , Fumar/psicologia , Córtex Visual/efeitos dos fármacos , Córtex Visual/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA