Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7152, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169041

RESUMO

For accurate mitotic cell division, replicated chromatin must be assembled into chromosomes and faithfully segregated into daughter cells. While protein factors like condensin play key roles in this process, it is unclear how chromosome assembly proceeds as molecular events of nucleosomes in living cells and how condensins act on nucleosomes to organize chromosomes. To approach these questions, we investigate nucleosome behavior during mitosis of living human cells using single-nucleosome tracking, combined with rapid-protein depletion technology and computational modeling. Our results show that local nucleosome motion becomes increasingly constrained during mitotic chromosome assembly, which is functionally distinct from condensed apoptotic chromatin. Condensins act as molecular crosslinkers, locally constraining nucleosomes to organize chromosomes. Additionally, nucleosome-nucleosome interactions via histone tails constrain and compact whole chromosomes. Our findings elucidate the physical nature of the chromosome assembly process during mitosis.


Assuntos
Adenosina Trifosfatases , Cromatina , Proteínas de Ligação a DNA , Mitose , Complexos Multiproteicos , Nucleossomos , Humanos , Nucleossomos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Complexos Multiproteicos/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Células HeLa , Cromossomos Humanos/metabolismo , Cromossomos Humanos/genética , Cromossomos/metabolismo
2.
Nat Commun ; 14(1): 5071, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604812

RESUMO

Cell division is the basis for the propagation of life and requires accurate duplication of all genetic information. DNA damage created during replication (replication stress) is a major cause of cancer, premature aging and a spectrum of other human disorders. Over the years, TRAIP E3 ubiquitin ligase has been shown to play a role in various cellular processes that govern genome integrity and faultless segregation. TRAIP is essential for cell viability, and mutations in TRAIP ubiquitin ligase activity lead to primordial dwarfism in patients. Here, we have determined the mechanism of inhibition of cell proliferation in TRAIP-depleted cells. We have taken advantage of the auxin induced degron system to rapidly degrade TRAIP within cells and to dissect the importance of various functions of TRAIP in different stages of the cell cycle. We conclude that upon rapid TRAIP degradation, specifically in S-phase, cells cease to proliferate, arrest in G2 stage of the cell cycle and undergo senescence. Our findings reveal that TRAIP works in S-phase to prevent DNA damage at transcription start sites, caused by replication-transcription conflicts.


Assuntos
Ubiquitina-Proteína Ligases , Humanos , Fase S/genética , Divisão Celular/genética , Proliferação de Células/genética , Ciclo Celular , Sobrevivência Celular , Ubiquitina-Proteína Ligases/genética
3.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232425

RESUMO

Cowden syndrome (CS) is a rare autosomal dominant disorder associated with multiple hamartomatous and neoplastic lesions in various organs. Most CS patients have been found to have germline mutations in the PTEN tumor suppressor. In the present study, we investigated the causative gene of CS in a family of PTEN (phosphatase and tensin homolog deleted on chromosome 10) -negative CS patients. Whole exome sequencing analysis revealed AMBRA1 (Autophagy and Beclin 1 Regulator 1) as a novel candidate gene harboring two germline variants: p.Gln30Arg (Q30R) and p.Arg1195Ser (R1195S). AMBRA1 is a key regulator of the autophagy signaling network and a tumor suppressor. To functionally validate the role of AMBRA1 in the clinical manifestations of CS, we generated AMBRA1 depletion and Q30R mutation in hTERT-RPE1 (humanTelomerase Reverse Transcriptase-immortalized Retinal Pigmented Epithelial cells) using the CRISPR-Cas9 gene editing system. We observed that both AMBRA1-depleted and mutant cells showed accumulation in the S phase, leading to hyperproliferation, which is a characteristic of hamartomatous lesions. Specifically, the AMBRA1 Q30R mutation disturbed the G1/S transition of cells, leading to continuous mitotic entry of mutant cells, irrespective of the extracellular condition. From our analysis of primary ciliogenesis in these cells, we speculated that the mitotic entry of AMBRA1 Q30R mutants could be due to non-functional primary cilia that lead to impaired processing of extracellular sensory signals. Additionally, we observed a situs inversus phenotype in ambra1-depleted zebrafish, a developmental abnormality resulting from dysregulated primary ciliogenesis. Taken together, we established that the AMBRA1 Q30R mutation that we observed in CS patients might play an important role in inducing the hyperproliferative potential of cells through regulating primary ciliogenesis.


Assuntos
Síndrome do Hamartoma Múltiplo , Animais , Proteína Beclina-1/genética , Mutação em Linhagem Germinativa , Síndrome do Hamartoma Múltiplo/complicações , Síndrome do Hamartoma Múltiplo/genética , Síndrome do Hamartoma Múltiplo/patologia , Mutação , PTEN Fosfo-Hidrolase/genética , DNA Polimerase Dirigida por RNA/genética , Tensinas/genética , Peixe-Zebra/genética
4.
Mol Cell ; 82(1): 140-158.e12, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34890565

RESUMO

High-intensity transcription and replication supercoil DNA to levels that can impede or halt these processes. As a potent transcription amplifier and replication accelerator, the proto-oncogene MYC must manage this interfering torsional stress. By comparing gene expression with the recruitment of topoisomerases and MYC to promoters, we surmised a direct association of MYC with topoisomerase 1 (TOP1) and TOP2 that was confirmed in vitro and in cells. Beyond recruiting topoisomerases, MYC directly stimulates their activities. We identify a MYC-nucleated "topoisome" complex that unites TOP1 and TOP2 and increases their levels and activities at promoters, gene bodies, and enhancers. Whether TOP2A or TOP2B is included in the topoisome is dictated by the presence of MYC versus MYCN, respectively. Thus, in vitro and in cells, MYC assembles tools that simplify DNA topology and promote genome function under high output conditions.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , Neoplasias/enzimologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transcrição Gênica , Animais , Replicação do DNA , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/genética , DNA de Neoplasias/biossíntese , DNA de Neoplasias/genética , DNA Super-Helicoidal/biossíntese , DNA Super-Helicoidal/genética , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Células K562 , Complexos Multienzimáticos , Neoplasias/genética , Neoplasias/patologia , Proteínas de Ligação a Poli-ADP-Ribose/genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Ratos
5.
Mol Cell ; 81(24): 5007-5024.e9, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34767771

RESUMO

As cells enter mitosis, chromatin compacts to facilitate chromosome segregation yet remains transcribed. Transcription supercoils DNA to levels that can impede further progression of RNA polymerase II (RNAPII) unless it is removed by DNA topoisomerase 1 (TOP1). Using ChIP-seq on mitotic cells, we found that TOP1 is required for RNAPII translocation along genes. The stimulation of TOP1 activity by RNAPII during elongation allowed RNAPII clearance from genes in prometaphase and enabled chromosomal segregation. Disruption of the TOP1-RNAPII interaction impaired RNAPII spiking at promoters and triggered defects in the post-mitotic transcription program. This program includes factors necessary for cell growth, and cells with impaired TOP1-RNAPII interaction are more sensitive to inhibitors of mTOR signaling. We conclude that TOP1 is necessary for assisting transcription during mitosis with consequences for growth and gene expression long after mitosis is completed. In this sense, TOP1 ensures that cellular memory is preserved in subsequent generations.


Assuntos
Proliferação de Células , Montagem e Desmontagem da Cromatina , Neoplasias Colorretais/enzimologia , DNA Topoisomerases Tipo I/metabolismo , Fase G1 , Mitose , RNA Polimerase II/metabolismo , Transcrição Gênica , Proliferação de Células/efeitos dos fármacos , Sequenciamento de Cromatina por Imunoprecipitação , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , DNA Topoisomerases Tipo I/genética , Fase G1/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Inibidores de MTOR/farmacologia , Mitose/efeitos dos fármacos , RNA Polimerase II/genética
6.
J Cell Biol ; 220(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33988677

RESUMO

Most cancer cells show chromosomal instability, a condition where chromosome missegregation occurs frequently. We found that chromosome oscillation, an iterative chromosome motion during metaphase, is attenuated in cancer cell lines. We also found that metaphase phosphorylation of Hec1 at serine 55, which is mainly dependent on Aurora A on the spindle, is reduced in cancer cell lines. The Aurora A-dependent Hec1-S55 phosphorylation level was regulated by the chromosome oscillation amplitude and vice versa: Hec1-S55 and -S69 phosphorylation by Aurora A is required for efficient chromosome oscillation. Furthermore, enhancement of chromosome oscillation reduced the number of erroneous kinetochore-microtubule attachments and chromosome missegregation, whereas inhibition of Aurora A during metaphase increased such errors. We propose that Aurora A-mediated metaphase Hec1-S55 phosphorylation through chromosome oscillation, together with Hec1-S69 phosphorylation, ensures mitotic fidelity by eliminating erroneous kinetochore-microtubule attachments. Attenuated chromosome oscillation and the resulting reduced Hec1-S55 phosphorylation may be a cause of CIN in cancer cell lines.


Assuntos
Aurora Quinase A/genética , Cromossomos/genética , Proteínas do Citoesqueleto/genética , Mitose/genética , Segregação de Cromossomos/genética , Células HeLa , Humanos , Cinetocoros , Microtúbulos/genética , Fosforilação/genética , Fuso Acromático/genética
7.
Cancer Sci ; 112(3): 1209-1224, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33340428

RESUMO

Cancer stem-like cells (CSCs) induce drug resistance and recurrence of tumors when they experience DNA replication stress. However, the mechanisms underlying DNA replication stress in CSCs and its compensation remain unclear. Here, we demonstrate that upregulated c-Myc expression induces stronger DNA replication stress in patient-derived breast CSCs than in differentiated cancer cells. Our results suggest critical roles for mini-chromosome maintenance protein 10 (MCM10), a firing (activating) factor of DNA replication origins, to compensate for DNA replication stress in CSCs. MCM10 expression is upregulated in CSCs and is maintained by c-Myc. c-Myc-dependent collisions between RNA transcription and DNA replication machinery may occur in nuclei, thereby causing DNA replication stress. MCM10 may activate dormant replication origins close to these collisions to ensure the progression of replication. Moreover, patient-derived breast CSCs were found to be dependent on MCM10 for their maintenance, even after enrichment for CSCs that were resistant to paclitaxel, the standard chemotherapeutic agent. Further, MCM10 depletion decreased the growth of cancer cells, but not of normal cells. Therefore, MCM10 may robustly compensate for DNA replication stress and facilitate genome duplication in cancer cells in the S-phase, which is more pronounced in CSCs. Overall, we provide a preclinical rationale to target the c-Myc-MCM10 axis for preventing drug resistance and recurrence of tumors.


Assuntos
Neoplasias da Mama/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Recidiva Local de Neoplasia/genética , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Proteínas de Manutenção de Minicromossomo/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/prevenção & controle , Células-Tronco Neoplásicas/efeitos dos fármacos , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Esferoides Celulares , Células Tumorais Cultivadas , Regulação para Cima
8.
Elife ; 92020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33141022

RESUMO

Human cells lacking RIF1 are highly sensitive to replication inhibitors, but the reasons for this sensitivity have been enigmatic. Here, we show that RIF1 must be present both during replication stress and in the ensuing recovery period to promote cell survival. Of two isoforms produced by alternative splicing, we find that RIF1-Long alone can protect cells against replication inhibition, but RIF1-Short is incapable of mediating protection. Consistent with this isoform-specific role, RIF1-Long is required to promote the formation of the 53BP1 nuclear bodies that protect unrepaired damage sites in the G1 phase following replication stress. Overall, our observations show that RIF1 is needed at several cell cycle stages after replication insult, with the RIF1-Long isoform playing a specific role during the ensuing G1 phase in damage site protection.


Assuntos
Núcleo Celular/genética , Replicação do DNA , Fase G1 , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ciclo Celular , Linhagem Celular , Núcleo Celular/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Splicing de RNA , Proteínas de Ligação a Telômeros/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
9.
Cell Rep ; 31(3): 107533, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32320646

RESUMO

The cohesin- and condensin-related SMC5/6 complex has largely been studied in the context of DNA repair. Nevertheless, SMC5/6 has an undefined essential function even in the absence of cellular stress. Through the use of an auxin-inducible degradation system for rapidly depleting subunits of the SMC5/6 complex, we show that SMC5/6 is essential for viability in cancer-derived and normal human cells. Impairment of SMC5/6 function is associated with spontaneous induction of DNA damage, p53 activation, cell-cycle arrest, and senescence, as well as an increased frequency of various mitotic chromosome segregation abnormalities. However, we show that this chromosome missegregation is apparent only when SMC5/6 function is impaired during the preceding S and G2 phases. In contrast, degradation of SMC5/6 immediately prior to mitotic entry has little or no impact on the fidelity of chromosome segregation, highlighting the importance of the complex during interphase in order to ensure faithful sister chromatid disjunction.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Instabilidade Genômica , Células HCT116 , Humanos , Interfase/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Cancer Sci ; 110(3): 1044-1053, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30648820

RESUMO

MCM8 and MCM9 are paralogues of the MCM2-7 eukaryotic DNA replication helicase proteins and play a crucial role in a homologous recombination-mediated repair process to resolve replication stress by fork stalling. Thus, deficiency of MCM8-9 sensitizes cells to replication stress caused, for example, by platinum compounds that induce interstrand cross-links. It is suggested that cancer cells undergo more replication stress than normal cells due to hyperstimulation of growth. Therefore, it is possible that inhibiting MCM8-9 selectively hypersensitizes cancer cells to platinum compounds and poly(ADP-ribose) polymerase inhibitors, both of which hamper replication fork progression. Here, we inhibited MCM8-9 in transformed and nontransformed cells and examined their sensitivity to cisplatin and olaparib. We found that knockout of MCM9 or knockdown of MCM8 selectively hypersensitized transformed cells to cisplatin and olaparib. In agreement with reported findings, RAS- and human papilloma virus type 16 E7-mediated transformation of human fibroblasts increased replication stress, as indicated by induction of multiple DNA damage responses (including formation of Rad51 foci). Such replication stress induced by oncogenes was further increased by knockdown of MCM8, providing a rationale for cancer-specific hypersensitization to cisplatin and olaparib. Finally, we showed that knocking out MCM9 increased the sensitivity of HCT116 xenograft tumors to cisplatin. Taken together, the data suggest that conceptual MCM8-9 inhibitors will be powerful cancer-specific chemosensitizers for platinum compounds and poly(ADP-ribose) polymerase inhibitors, thereby opening new avenues to the design of novel cancer chemotherapeutic strategies.


Assuntos
Cisplatino/farmacologia , Proteínas de Manutenção de Minicromossomo/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Ftalazinas/farmacologia , Piperazinas/farmacologia , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HCT116 , Recombinação Homóloga/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/metabolismo , Compostos Organoplatínicos/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Reparo de DNA por Recombinação/efeitos dos fármacos
11.
Elife ; 72018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29848445

RESUMO

To position the mitotic spindle within the cell, dynamic plus ends of astral microtubules are pulled by membrane-associated cortical force-generating machinery. However, in contrast to the chromosome-bound kinetochore structure, how the diffusion-prone cortical machinery is organized to generate large spindle-pulling forces remains poorly understood. Here, we develop a light-induced reconstitution system in human cells. We find that induced cortical targeting of NuMA, but not dynein, is sufficient for spindle pulling. This spindle-pulling activity requires dynein-dynactin recruitment by NuMA's N-terminal long arm, dynein-based astral microtubule gliding, and NuMA's direct microtubule-binding activities. Importantly, we demonstrate that cortical NuMA assembles specialized focal structures that cluster multiple force-generating modules to generate cooperative spindle-pulling forces. This clustering activity of NuMA is required for spindle positioning, but not for spindle-pole focusing. We propose that cortical Dynein-Dynactin-NuMA (DDN) clusters act as the core force-generating machinery that organizes a multi-arm ensemble reminiscent of the kinetochore.


Assuntos
Antígenos Nucleares/metabolismo , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Fuso Acromático/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Antígenos Nucleares/química , Proteínas de Ciclo Celular , Linhagem Celular , Humanos , Ácidos Indolacéticos/farmacologia , Luz , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Mutação/genética , Proteínas Associadas à Matriz Nuclear/química , Optogenética , Paclitaxel/farmacologia , Fenótipo , Domínios Proteicos
12.
J Cell Sci ; 131(6)2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29487178

RESUMO

Although condensins play essential roles in mitotic chromosome assembly, Ki-67 (also known as MKI67), a protein localizing to the periphery of mitotic chromosomes, had also been shown to make a contribution to the process. To examine their respective roles, we generated a set of HCT116-based cell lines expressing Ki-67 and/or condensin subunits that were fused with an auxin-inducible degron for their conditional degradation. Both the localization and the dynamic behavior of Ki-67 on mitotic chromosomes were not largely affected upon depletion of condensin subunits, and vice versa. When both Ki-67 and SMC2 (a core subunit of condensins) were depleted, ball-like chromosome clusters with no sign of discernible thread-like structures were observed. This severe defective phenotype was distinct from that observed in cells depleted of either Ki-67 or SMC2 alone. Our results show that Ki-67 and condensins, which localize to the external surface and the central axis of mitotic chromosomes, respectively, have independent yet cooperative functions in supporting the structural integrity of mitotic chromosomes.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromossomos Humanos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Antígeno Ki-67/metabolismo , Mitose , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Cromossomos Humanos/genética , Proteínas de Ligação a DNA/genética , Humanos , Ácidos Indolacéticos/metabolismo , Antígeno Ki-67/genética , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transporte Proteico
13.
Genes Dev ; 31(8): 816-829, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28487407

RESUMO

DNA replication fork progression can be disrupted at difficult to replicate loci in the human genome, which has the potential to challenge chromosome integrity. This replication fork disruption can lead to the dissociation of the replisome and the formation of DNA damage. To model the events stemming from replisome dissociation during DNA replication perturbation, we used a degron-based system for inducible proteolysis of a subunit of the replicative helicase. We show that MCM2-depleted cells activate a DNA damage response pathway and generate replication-associated DNA double-strand breaks (DSBs). Remarkably, these cells maintain some DNA synthesis in the absence of MCM2, and this requires the MCM8-9 complex, a paralog of the MCM2-7 replicative helicase. We show that MCM8-9 functions in a homologous recombination-based pathway downstream from RAD51, which is promoted by DSB induction. This RAD51/MCM8-9 axis is distinct from the recently described RAD52-dependent DNA synthesis pathway that operates in early mitosis at common fragile sites. We propose that stalled replication forks can be restarted in S phase via homologous recombination using MCM8-9 as an alternative replicative helicase.


Assuntos
Replicação do DNA/genética , DNA/biossíntese , Proteínas de Manutenção de Minicromossomo/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Ativação Enzimática/genética , Células HCT116 , Recombinação Homóloga/genética , Humanos , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Mutação , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Fase S/genética
14.
Genes Cells ; 21(10): 1113-1124, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27610954

RESUMO

Although the condensin complexes and topoisomerase IIα (TopoIIα) are the central players in mitotic chromosome formation, they are insufficient for its completion, and additional factors involved in the process have been extensively sought. In this study, we examined the possibility that Ki67, a perichromosomal protein widely used as a cell proliferation marker, is one such factor. Using a combination of auxin-inducible degron and CRISPR-Cas9-based gene editing technologies, we generated a human HCT116 cell line in which Ki67 is rapidly depleted in a few hours. The removal of Ki67 before mitotic entry did not impact the early mitotic chromosome assembly observed in prophase but subsequently resulted in the formation of misshapen mitotic chromosomes. When Ki67 was removed after mitotic entry, preassembled rod-shaped mitotic chromosomes became disorganized. In addition, we show that Ki67 and TopoIIα are reciprocally coimmunoprecipitated from mitotic cell extracts. These observations indicate that Ki67 aids the finalization of mitotic chromosome formation and helps maintain rod-shaped chromosome architecture, likely in collaboration with TopoIIα. Together, these findings represent a new model in which mitotic chromosome architecture is supported both internally and externally.


Assuntos
Cromossomos Humanos/fisiologia , Antígeno Ki-67/fisiologia , Mitose/fisiologia , Antígenos de Neoplasias/fisiologia , DNA Topoisomerases Tipo II/fisiologia , Proteínas de Ligação a DNA/fisiologia , Células HCT116 , Células HeLa , Humanos , Antígeno Ki-67/genética , Modelos Biológicos
15.
PLoS One ; 3(5): e2221, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18493607

RESUMO

Specialized chromatin exists at centromeres and must be precisely transmitted during DNA replication. The mechanisms involved in the propagation of these structures remain elusive. Fission yeast centromeres are composed of two chromatin domains: the central CENP-A(Cnp1) kinetochore domain and flanking heterochromatin domains. Here we show that fission yeast Mcl1, a DNA polymerase alpha (Pol alpha) accessory protein, is critical for maintenance of centromeric chromatin. In a screen for mutants that alleviate both central domain and outer repeat silencing, we isolated several cos mutants, of which cos1 is allelic to mcl1. The mcl1-101 mutation causes reduced CENP-A(Cnp1) in the central domain and an aberrant increase in histone acetylation in both domains. These phenotypes are also observed in a mutant of swi7(+), which encodes a catalytic subunit of Pol alpha. Mcl1 forms S-phase-specific nuclear foci, which colocalize with those of PCNA and Pol alpha. These results suggest that Mcl1 and Pol alpha are required for propagation of centromere chromatin structures during DNA replication.


Assuntos
Centrômero , DNA Polimerase I/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Schizosaccharomyces/ultraestrutura , Acetilação , Imunoprecipitação da Cromatina , Cromossomos Fúngicos , Clonagem Molecular , Inativação Gênica , Histona Desacetilases/genética , Histonas/metabolismo , Microscopia de Fluorescência , Mutação , Proteína de Sequência 1 de Leucemia de Células Mieloides , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
16.
Curr Genet ; 48(1): 34-43, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15915339

RESUMO

Schizosaccharomyces pombe rad2 is involved in Okazaki fragments processing during lagging-strand DNA replication. Previous studies identified several slr mutants that are co-lethal with rad2Delta and sensitive to methyl methanesulfonate as single mutants. One of these mutants, slr3-1, is characterized here. Complementation and sequence analyses show that slr3-1 (mcl1-101) is allelic to mcl1(+), which is required for chromosome replication, cohesion and segregation. mcl1-101 is temperature-sensitive for growth and is highly sensitive to DNA damage. mcl1 cells arrest with 2C DNA content and chromosomal DNA double-strand breaks accumulate at the restrictive temperature. Mcl1p, which belongs to the Ctf4p/SepBp family, interacts both genetically and physically with DNA polymerase alpha. Mutations in rhp51 and dna2 enhance the growth defect of the mcl1-101 mutant. These results strongly suggest that Mcl1p is a functional homologue of Saccharomyces cerevisiae Ctf4p and plays a role in lagging-strand synthesis and Okazaki fragment processing, in addition to DNA repair.


Assuntos
DNA Polimerase I/genética , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , Endodesoxirribonucleases/genética , Endonucleases Flap/genética , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Schizosaccharomyces/genética , Clonagem Molecular , DNA , Dano ao DNA , DNA Polimerase I/metabolismo , Eletroforese em Gel de Campo Pulsado , Endodesoxirribonucleases/metabolismo , Endonucleases Flap/fisiologia , Mutação , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas de Neoplasias/metabolismo , Plasmídeos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA