Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Dtsch Dermatol Ges ; 19(6): 828-832, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33768660

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is an incurable severe skin disease caused by loss of collagen VII, an extracellular protein that ensures skin cohesion. It manifests in skin blistering and unresolved cycles of wounding and healing that progressively lead to dermal stiffening and early development of aggressive cutaneous squamous cell carcinomas. Inflammation and subsequent tissue fibrosis highly contribute to RDEB pathogenicity and targeting them could provide new therapeutic options. Kallikreins (KLKs) are epidermal secreted proteases, which contribute to skin desquamation and inflammation. Kallikreins are involved in the pathogenesis of several inflammatory skin disorders, but interestingly also in the initiation and progression of different cancers. Our project aims at deciphering the role of KLKs in inflammation, fibrosis, and tumor development in RDEB.


Assuntos
Epidermólise Bolhosa Distrófica , Colágeno Tipo VII/genética , Epiderme , Epidermólise Bolhosa Distrófica/genética , Humanos , Peptídeo Hidrolases , Pele
2.
J Invest Dermatol ; 141(4): 883-893.e6, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32946877

RESUMO

Dystrophic epidermolysis bullosa (DEB) is a blistering skin disease caused by mutations in the gene COL7A1 encoding collagen VII. DEB can be inherited as recessive DEB (RDEB) or dominant DEB (DDEB) and is associated with a high wound burden. Perpetual cycles of wounding and healing drive fibrosis in DDEB and RDEB, as well as the formation of a tumor-permissive microenvironment. Prolonging wound-free episodes by improving the quality of wound healing would therefore confer substantial benefit for individuals with DEB. The collagenous domain of collagen VII is encoded by 82 in-frame exons, which makes splice-modulation therapies attractive for DEB. Indeed, antisense oligonucleotide-based exon skipping has shown promise for RDEB. However, the suitability of antisense oligonucleotides for treatment of DDEB remains unexplored. Here, we developed QR-313, a clinically applicable, potent antisense oligonucleotide specifically targeting exon 73. We show the feasibility of topical delivery of QR-313 in a carbomer-composed gel for treatment of wounds to restore collagen VII abundance in human RDEB skin. Our data reveal that QR-313 also shows direct benefit for DDEB caused by exon 73 mutations. Thus, the same topically applied therapeutic could be used to improve the wound healing quality in RDEB and DDEB.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/terapia , Terapia Genética/métodos , Oligonucleotídeos Antissenso/administração & dosagem , Cicatrização/genética , Animais , Biópsia , Linhagem Celular , Modelos Animais de Doenças , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/patologia , Éxons/genética , Fibroblastos , Fibrose , Humanos , Queratinócitos , Camundongos , Camundongos Transgênicos , Mutação , Oligonucleotídeos Antissenso/genética , Cultura Primária de Células , Pele/efeitos dos fármacos
3.
Matrix Biol Plus ; 6-7: 100019, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33543017

RESUMO

As the outermost layer of the skin, the epidermis is playing a major role in organism homeostasis providing the first barrier against external aggressions. Although considered as an extracellular matrix (ECM)-poor subtissue, the epidermal microenvironment is a key regulator of skin homeostasis and functionality. Among the proteins essential for upholding the epidermal microenvironment are the members of the kallikrein (KLK) family composed of 15 secreted serine proteases. Most of the members of these epithelial-specific proteins are present in skin and regulate skin desquamation and inflammation. However, although epidermal products, the consequences of KLK activities are not confined to the epidermis but widespread in the skin. In this review starting with the location and proteolytic activation cascade of KLKs, we present KLKs involvement in skin homeostasis, regeneration and pathology. KLKs have a large variety of substrates including ECM proteins, and evidence suggests that they are involved in the different steps of skin wound healing as discussed here. KLKs are also used as prognosis/diagnosis markers for many cancer types and we are focusing later on KLKs in cutaneous cancers, although their pathogenicity remains to be fully elucidated. Dysregulation of the KLK cascade is directly responsible for skin diseases with heavy inflammatory aspects, highlighting their involvement in skin immune homeostasis. Future studies will be needed to support the therapeutic potential of adjusting KLK activities for treatment of inflammatory skin diseases and wound healing pathologies.

4.
J Dermatol Sci ; 95(1): 28-35, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31255470

RESUMO

BACKGROUND: Netherton syndrome (NS) is a rare but severe type of ichthyosis characterized by atopy, allergies, and potentially lethal skin overdesquamation associated with highly elevated proteolytic activities in LEKTI-deficient epidermis. NS symptoms are recapitulated in Spink5-/- mouse where the gene encoding Lekti has been invalidated. Spink5-/- mice die within 5h from birth due to their severe skin barrier defect leading to dehydration. Spink5-/- mice also serve as a model for atopic dermatitis. The KLK6 protease is expressed by epidermal keratinocytes and shown in vitro to cleave desmosomal components. OBJECTIVE: To investigate in vivo whether KLK6 is implicated in epidermal overdesquamation and/or inflammation associated with NS. METHODS: The role of KLK6 was evaluated by generating Spink5-/-Klk6-/- double knockout mice. The phenotype was assessed by macroscopic observation, immunohistochemistry for differentiation markers, in situ zymography for proteolysis, and quantification of proinflammatory cytokines. RESULTS: Elimination of Klk6 in Spink5-/- remarkably suppresses the expression of Tslp, a major itching-inducing factor and driver of allergic reactions. Tnfα and the Th17 promoting cytokine Il-23 were also suppressed. Spink5-/-Klk6-/- mice display normalized keratinocyte differentiation, nevertheless, epidermal proteolytic activities and the associated overdesquamation were not ameliorated, and Spink5-/-Klk6-/- still died from a severe epidermal barrier defect as the Spink5-/-. CONCLUSIONS: Ablation of Klk6 largely suppresses epidermal inflammation but cannot rescue overdesquamation leading to the lethal NS phenotype. Nonetheless, our findings demonstrate for the first time that KLK6 is implicated in skin inflammation and may represent a novel druggable target for NS and other inflammatory conditions e.g. atopic dermatitis.


Assuntos
Citocinas/imunologia , Calicreínas/imunologia , Síndrome de Netherton/imunologia , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Animais , Biópsia , Diferenciação Celular/imunologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Epiderme/imunologia , Epiderme/patologia , Voluntários Saudáveis , Humanos , Calicreínas/genética , Calicreínas/metabolismo , Queratinócitos/imunologia , Queratinócitos/patologia , Camundongos , Camundongos Knockout , Síndrome de Netherton/genética , Síndrome de Netherton/patologia , Cultura Primária de Células , Linfopoietina do Estroma do Timo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA