Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 74(4): 2007-2020, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33959996

RESUMO

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is characterized by high resistance to chemotherapy and poor prognosis. Several oncogenic pathways converge on activation of extracellular signal-regulated kinase 5 (ERK5), whose role in CCA has not been explored. The aim of this study was to investigate the role of ERK5 in the biology of CCA. APPROACH AND RESULTS: ERK5 expression was detected in two established (HuCCT-1 and CCLP-1) and two primary human intrahepatic CCA cell lines (iCCA58 and iCCA60). ERK5 phosphorylation was increased in CCA cells exposed to soluble mediators. In both HuCCT-1 and CCLP-1 cells, ERK5 was localized in the nucleus, and exposure to fetal bovine serum (FBS) further increased the amount of nuclear ERK5. In human CCA specimens, ERK5 mRNA expression was increased in tumor cells and positively correlated with portal invasion. ERK5 protein levels were significantly associated with tumor grade. Growth, migration, and invasion of CCA cells were decreased when ERK5 was silenced using specific short hairpin RNA (shRNA). The inhibitory effects on CCA cell proliferation, migration and invasion were recapitulated by treatment with small molecule inhibitors targeting ERK5. In addition, expression of the angiogenic factors VEGF and angiopoietin 1 was reduced after ERK5 silencing. Conditioned medium from ERK5-silenced cells had a lower ability to induce tube formation by human umbilical vein endothelial cells and to induce migration of myofibroblasts and monocytes/macrophages. In mice, subcutaneous injection of CCLP-1 cells silenced for ERK5 resulted in less frequent tumor development and smaller size of xenografts compared with cells transfected with nontargeting shRNA. CONCLUSIONS: ERK5 is a key mediator of growth and migration of CCA cells and supports a protumorigenic crosstalk between the tumor and the microenvironment.


Assuntos
Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos , Colangiocarcinoma/genética , Proteína Quinase 7 Ativada por Mitógeno/genética , Animais , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Meios de Cultivo Condicionados , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Macrófagos , Camundongos , Monócitos , Miofibroblastos , Gradação de Tumores , Invasividade Neoplásica , Transplante de Neoplasias , Neovascularização Patológica/genética , Fenótipo , RNA Mensageiro/metabolismo
2.
J Hepatol ; 74(6): 1373-1385, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33484774

RESUMO

BACKGROUND & AIMS: Little is known about the metabolic regulation of cancer stem cells (CSCs) in cholangiocarcinoma (CCA). We analyzed whether mitochondrial-dependent metabolism and related signaling pathways contribute to stemness in CCA. METHODS: The stem-like subset was enriched by sphere culture (SPH) in human intrahepatic CCA cells (HUCCT1 and CCLP1) and compared to cells cultured in monolayer. Extracellular flux analysis was examined by Seahorse technology and high-resolution respirometry. In patients with CCA, expression of factors related to mitochondrial metabolism was analyzed for possible correlation with clinical parameters. RESULTS: Metabolic analyses revealed a more efficient respiratory phenotype in CCA-SPH than in monolayers, due to mitochondrial oxidative phosphorylation. CCA-SPH showed high mitochondrial membrane potential and elevated mitochondrial mass, and over-expressed peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α, a master regulator of mitochondrial biogenesis. Targeting mitochondrial complex I in CCA-SPH using metformin, or PGC-1α silencing or pharmacologic inhibition (SR-18292), impaired spherogenicity and expression of markers related to the CSC phenotype, pluripotency, and epithelial-mesenchymal transition. In mice with tumor xenografts generated by injection of CCA-SPH, administration of metformin or SR-18292 significantly reduced tumor growth and determined a phenotype more similar to tumors originated from cells grown in monolayer. In patients with CCA, expression of PGC-1α correlated with expression of mitochondrial complex II and of stem-like genes. Patients with higher PGC-1α expression by immunostaining had lower overall and progression-free survival, increased angioinvasion and faster recurrence. In GSEA analysis, patients with CCA and high levels of mitochondrial complex II had shorter overall survival and time to recurrence. CONCLUSIONS: The CCA stem-subset has a more efficient respiratory phenotype and depends on mitochondrial oxidative metabolism and PGC-1α to maintain CSC features. LAY SUMMARY: The growth of many cancers is sustained by a specific type of cells with more embryonic characteristics, termed 'cancer stem cells'. These cells have been described in cholangiocarcinoma, a type of liver cancer with poor prognosis and limited therapeutic approaches. We demonstrate that cancer stem cells in cholangiocarcinoma have different metabolic features, and use mitochondria, an organelle located within the cells, as the major source of energy. We also identify PGC-1α, a molecule which regulates the biology of mitochondria, as a possible new target to be explored for developing new treatments for cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fosforilação Oxidativa , Fenótipo , Transdução de Sinais/genética , Animais , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular Tumoral , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Complexo II de Transporte de Elétrons/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Inativação Gênica , Humanos , Indóis/administração & dosagem , Masculino , Metformina/administração & dosagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação Oxidativa/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/antagonistas & inibidores , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Intervalo Livre de Progressão , Propanóis/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Transfecção , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Am J Pathol ; 189(10): 2090-2101, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351075

RESUMO

Fibroblast growth factor receptor 2 (FGFR2) might have an important role in the pathogenesis and biology of cholangiocarcinoma (CCA). We examined FGFR expression in CCA tumor specimens obtained from patients and CCA cell lines, and then determined the effects of the novel FGFR inhibitor, derazantinib (DZB; formally, ARQ 087), which is currently in clinical phase 2 trials for intrahepatic CCA. DZB inhibited the growth of CCA cell lines in a dose-dependent manner, and extracellular signal-regulated kinase 1/2 and AKT. It also activated apoptotic and cell growth arrest signaling. DZB reduced the in vitro invasiveness and the expression of key epithelial-mesenchymal transition genes. The in vitro data correlated with the expression of FGFRs in human CCA specimens by immunohistochemistry (FGFR1, 30% positive; and FGFR2, 65% positive) and the CCA cell lines assayed by Western blot analysis. These correlated in vitro studies suggest that FGFR may play an important role in the pathogenesis and biology of CCA. Our findings support the notion that FGFR inhibitors, like DZB, should be further evaluated at the clinical stage as targeted therapy for CCA treatment.


Assuntos
Compostos de Anilina/farmacologia , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Proliferação de Células , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/metabolismo , Humanos , Fosforilação , Transdução de Sinais , Células Tumorais Cultivadas
4.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2246-2256, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31059778

RESUMO

Development of cholangiocarcinoma (CCA) is dependent on a cross-talk with stromal cells, which release different chemokines including CXCL12, that interacts with two different receptors, CXCR4 and CXCR7. The aim of the present study was to investigate the role of CXCR7 in CCA cells. CXCR7 is overexpressed by different CCA cell lines and in human CCA specimens. Knock-down of CXCR7 in HuCCT-1 cells reduced migration, invasion, and CXCL12-induced adhesion to collagen I. Survival of CCA was also reduced in CXCR7-silenced cells. The ability of CXCL12 to induce cell migration and survival was also blocked by CCX733, a CXCR7 antagonist. Similar effects of CXCR7 activation were observed in CCLP-1 cells and in primary iCCA cells. Enrichment of tumor stem-like cells by a 3D culture system resulted in increased CXCR7 expression compared to cells grown in monolayers, and genetic knockdown of CXCR7 robustly reduced sphere formation both in HuCCT-1 and in CCLP-1 cells. In HuCCT-1 cells CXCR7 was found to interact with ß-arrestin 2, which was necessary to mediate CXCL12-induced migration, but not survival. In conclusion, CXCR7 is widely expressed in CCA, and contributes to the aggressive phenotype of CCA cells, inducing cell migration, invasion, adhesion, survival, growth and stem cell-like features. Cell migration induced by CXCR7 requires interaction with ß-arrestin 2.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Receptores CXCR/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Movimento Celular , Sobrevivência Celular , Quimiocina CXCL12/metabolismo , Colangiocarcinoma/metabolismo , Feminino , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores CXCR/antagonistas & inibidores , Receptores CXCR/genética , Células Tumorais Cultivadas , beta-Arrestina 2/metabolismo
5.
Clin Sci (Lond) ; 130(20): 1793-806, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27439970

RESUMO

Berberine (BRB) is commonly used in herbal medicine, but its mechanisms of action are poorly understood. In the present study, we tested BRB in steatohepatitis induced by a methionine- and choline-deficient (MCD) diet, in acute acetaminophen intoxication and in cultured murine macrophages. BRB markedly improved parameters of liver injury and necroinflammation induced by the MCD diet, although increased mortality was observed by mechanisms independent of bacterial infections or plasma levels of BRB. The MCD diet induced up-regulation of all components of the NLRP3 (NACHT, LRR and PYD domain-containing protein 3) inflammasome, and increased hepatic levels of mature IL-1ß (interleukin 1ß). All of these parameters were significantly reduced in mice treated with BRB. In mice administered an acetaminophen overdose, a model dependent on inflammasome activation, BRB reduced mortality and ALT (alanine aminotransferase) elevation, and limited the expression of inflammasome components. In vitro, LPS (lipopolysaccharide)-induced activation of NLRP3 inflammasome in RAW264.7 murine macrophages was markedly decreased by pre-incubation with BRB. BRB significantly limited the activation of the purinergic receptor P2X7, involved in the late phases of inflammasome activation. Upon P2X7 knockdown, the ability of BRB to block LPS-induced secretion of IL-1ß was lost. These data indicate that administration of BRB ameliorates inflammation and injury in two unrelated murine models of liver damage. We demonstrate for the first time that BRB interferes with activation of the NLRP3 inflammasome pathway in vivo and in vitro, through a mechanism based on interference with activation of P2X7, a purinergic receptor involved in inflammasome activation.


Assuntos
Acetaminofen/efeitos adversos , Berberina/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Inflamassomos/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais
6.
Gut ; 64(9): 1454-65, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25183205

RESUMO

OBJECTIVE: The extracellular signal-regulated kinase 5 (ERK5 or BMK1) is involved in tumour development. The ERK5 gene may be amplified in hepatocellular carcinoma (HCC), but its biological role has not been clarified. In this study, we explored the role of ERK5 expression and activity in HCC in vitro and in vivo. DESIGN: ERK5 expression was evaluated in human liver tissue. Cultured HepG2 and Huh-7 were studied after ERK5 knockdown by siRNA or in the presence of the specific pharmacological inhibitor, XMD8-92. The role of ERK5 in vivo was assessed using mouse Huh-7 xenografts. RESULTS: In tissue specimens from patients with HCC, a higher percentage of cells with nuclear ERK5 expression was found both in HCC and in the surrounding cirrhotic tissue compared with normal liver tissue. Inhibition of ERK5 decreased HCC cell proliferation and increased the proportion of cells in G0/G1 phase. These effects were associated with increased expression of p27 and p15 and decreased CCND1. Treatment with XMD8-92 or ERK5 silencing prevented cell migration induced by epidermal growth factor or hypoxia and caused cytoskeletal remodelling. In mouse xenografts, the rate of tumour appearance and the size of tumours were significantly lower when Huh-7 was silenced for ERK5. Moreover, systemic treatment with XMD8-92 of mice with established HCC xenografts markedly reduced tumour growth and decreased the expression of the proto-oncogene c-Rel. CONCLUSIONS: ERK5 regulates the biology of HCC cells and modulates tumour development and growth in vivo. This pathway should be investigated as a possible therapeutic target in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Proteína Quinase 7 Ativada por Mitógeno/genética , Animais , Biópsia por Agulha , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/fisiopatologia , Proliferação de Células/genética , Modelos Animais de Doenças , Progressão da Doença , Xenoenxertos , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/fisiopatologia , Camundongos , Transplante de Neoplasias , Proto-Oncogene Mas , RNA Interferente Pequeno/análise , Sensibilidade e Especificidade , Células Tumorais Cultivadas
7.
Clin Sci (Lond) ; 123(7): 459-71, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22545719

RESUMO

Expression of CCL2 (CC chemokine ligand 2) (or monocyte chemoattractant protein-1) regulates inflammatory cell infiltration in the liver and adipose tissue, favouring steatosis. However, its role in the pathogenesis of steatohepatitis is still uncertain. In the present study, we investigated the development of non-alcoholic steatohepatitis induced by an MCD diet (methionine/choline-deficient diet) in mice lacking the CCL2 gene on two different genetic backgrounds, namely Balb/C and C57/Bl6J. WT (wild-type) and CCL2-KO (knockout) mice were fed on a lipid-enriched MCD diet or a control diet for 8 weeks. In Balb/C mice fed on the MCD diet, a lack of CCL2 was associated with lower ALT (alanine transaminase) levels and reduced infiltration of inflammatory cells, together with a lower generation of oxidative-stress-related products. Sirius Red staining demonstrated pericellular fibrosis in zone 3, and image analysis showed a significantly lower matrix accumulation in CCL2-KO mice. This was associated with reduced hepatic expression of TGF-ß (transforming growth factor-ß), type I procollagen, TIMP-1 (tissue inhibitor of metalloproteinases-1) and α-smooth muscle actin. In contrast, in mice on a C57Bl/6 background, neither ALT levels nor inflammation or fibrosis were significantly different comparing WT and CCL2-KO animals fed on an MCD diet. In agreement, genes related to fibrogenesis were expressed to comparable levels in the two groups of animals. Comparison of the expression of several genes involved in inflammation and repair demonstrated that IL (interleukin)-4 and the M2 marker MGL-1 (macrophage galactose-type C-type lectin 1) were differentially expressed in Balb/C and C57Bl/6 mice. No significant differences in the degree of steatosis were observed in all groups of mice fed on the MCD diet. We conclude that, in experimental murine steatohepatitis, the effects of CCL2 deficiency are markedly dependent on the genetic background.


Assuntos
Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Fígado Gorduroso/genética , Fígado Gorduroso/imunologia , Cirrose Hepática/genética , Cirrose Hepática/imunologia , Animais , Quimiocina CCL2/metabolismo , Colágeno Tipo I/genética , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Fígado Gorduroso/patologia , Células Estreladas do Fígado/imunologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Cirrose Hepática/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/imunologia , Especificidade da Espécie , Inibidor Tecidual de Metaloproteinase-1/genética , Fator de Crescimento Transformador beta/genética
8.
Am J Physiol Gastrointest Liver Physiol ; 301(2): G210-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21252047

RESUMO

Leptin modulates the angiogenic properties of hepatic stellate cells (HSC), but the molecular mechanisms involved are poorly understood. We investigated the pathways regulating hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) in leptin-stimulated myofibroblastic HSC. Exposure to leptin enhanced the phosphorylation of TSC2 on T1462 residues and of p70 S6 kinase and the translational inhibitor 4E-binding protein-1, indicating the ability of leptin to activate the mammalian target of rapamycin (mTOR) pathway. Similar findings were observed when HSC were exposed to PDGF. Both leptin and PDGF increased the expression of HIF-1α and VEGF in HSC. In the presence of rapamycin, a specific mTOR inhibitor, leptin and PDGF were no longer able to activate mTOR, and expression of VEGF was reduced, whereas HIF-1α abundance was not affected. Moreover, knockdown of Raptor, a component of the mTORC1 complex, reduced the ability of leptin to increase VEGF. mTOR was also necessary for leptin- and PDGF-dependent increase in HSC migration. Leptin increased the generation of reactive oxygen species in HSC, which was reduced by NADP(H) oxidase inhibitors. Both N-acetyl cysteine and diphenylene iodonium, a NADP(H) inhibitor, inhibited the expression of HIF-1α and VEGF stimulated by leptin or PDGF. Finally, conditioned media from HSC treated with leptin or PDGF induced tube formation in cultured human umbilical vein endothelial cells. In conclusion, in HSC exposed to leptin or PDGF, increased expression of VEGF requires both activation of mTOR and generation of reactive oxygen species via NADPH-oxidase. Induction of HIF-1α requires NADP(H) oxidase but not mTOR activation.


Assuntos
Células Estreladas do Fígado/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Leptina/fisiologia , Fígado/irrigação sanguínea , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular , Movimento Celular/fisiologia , Células Hep G2 , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Leptina/metabolismo , NADPH Oxidases/fisiologia , Neovascularização Patológica , Neovascularização Fisiológica , Fosforilação , Fator de Crescimento Derivado de Plaquetas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/química , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/química , Fator A de Crescimento do Endotélio Vascular/fisiologia
9.
Am J Physiol Gastrointest Liver Physiol ; 290(1): G120-8, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16150872

RESUMO

Thrombopoietin (TPO), a cytokine that participates in the differentiation and maturation of megakaryocytes, is produced in the liver, but only limited information is available on the biological response of liver-derived cells to TPO. In this study, we investigated whether HepG2 cells express c-Mpl, the receptor for TPO, and whether TPO elicits biological responses and intracellular signaling in this cell type. Specific transcripts for c-Mpl were detected in HepG2 cells by RT-PCR, and expression of the protein was demonstrated by Western blot analysis and immunofluorescence. Exposure of HepG2 cells to TPO was associated with a dose-dependent increase in cell migration and chemoinvasion through Matrigel-coated filters. A checkerboard analysis showed that the effects of TPO on cell migration were dependent on both chemotaxis and chemokinesis. Exposure of HepG2 cells to TPO resulted in the activation of different members of the MAPK family, including ERK and JNK, as assessed using phosphorylation-specific antibodies and immune complex kinase assays. TPO also activated phosphatidylinositol 3-kinase (PI3K) and the downstream kinase Akt in a time-dependent manner. Finally, activation of c-Mpl was associated with increased activation of nuclear factor-kappaB. With the use of specific inhibitors, tyrosine phosphorylation and activation of PI3K were found to be required for the induction of migration in response to TPO. We conclude that TPO exerts biological actions on cultured hepatoblastoma cells via activation of c-Mpl and its downstream signaling.


Assuntos
Movimento Celular/efeitos dos fármacos , Hepatoblastoma/metabolismo , Hepatoblastoma/patologia , Transdução de Sinais/efeitos dos fármacos , Trombopoetina/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Receptores de Trombopoetina , Trombopoetina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA