Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 93: 253-63, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27544863

RESUMO

ABHD11 (α/ß-hydrolase domain containing 11) is a non-annotated enzyme belonging to the family of metabolic serine hydrolases (mSHs). Its natural substrates and products are unknown. Using competitive activity-based protein profiling (ABPP) to identify novel inhibitors of human (h)ABHD11, three compounds from our chemical library exhibited low nanomolar potency towards hABHD11. Competitive ABPP of various proteomes revealed fatty acid amide hydrolase (FAAH) as the sole off-target among the mSHs. Our fluorescent activity assays designed for natural lipase substrates revealed no activity of hABHD11 towards mono- or diacylglycerols. A broader profiling using para-nitrophenyl (pNP)-linked substrates indicated no amidase/protease, phosphatase, sulfatase, phospholipase C or phosphodiesterase activity. Instead, hABHD11 readily utilized para-nitrophenyl butyrate (pNPC4), indicating lipase/esterase-type activity that could be exploited in inhibitor discovery. Additionally, a homology model was created based on the crystal structure of bacterial esterase YbfF. In contrast to YbfF, which reportedly hydrolyze long-chain acyl-CoA, hABHD11 did not utilize oleoyl-CoA or arachidonoyl-CoA. In conclusion, the present study reports the discovery of potent hABHD11 inhibitors with good selectivity among mSHs. We developed substrate-based activity assays for hABHD11 that could be further exploited in inhibitor discovery and created the first homology-based hABHD11 model, offering initial insights into the active site of this poorly characterized enzyme.


Assuntos
Serina Proteases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Animais , Arilformamidase/genética , Encéfalo/metabolismo , Linhagem Celular Tumoral , Descoberta de Drogas , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Modelos Moleculares , Proteômica , Serina Proteases/química , Serina Proteases/genética , Tioléster Hidrolases/genética
2.
J Pharmacol Exp Ther ; 359(1): 62-72, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27451409

RESUMO

Monoacylglycerol lipase (MAGL) is a serine hydrolase that acts as a principal degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). In addition to terminating the signaling function of 2-AG, MAGL liberates arachidonic acid to be used as a primary source for neuroinflammatory prostaglandin synthesis in the brain. MAGL activity also contributes to cancer pathogenicity by producing precursors for tumor-promoting bioactive lipids. Pharmacological inhibitors of MAGL provide valuable tools for characterization of MAGL and 2-AG signaling pathways. They also hold great therapeutic potential to treat several pathophysiological conditions, such as pain, neurodegenerative disorders, and cancer. We have previously reported piperidine triazole urea, {4-[bis-(benzo[d][1,3]dioxol-5-yl)methyl]-piperidin-1-yl}(1H-1,2,4-triazol-1-yl)methanone (JJKK-048), to be an ultrapotent and highly selective inhibitor of MAGL in vitro. Here, we characterize in vivo effects of JJKK-048. Acute in vivo administration of JJKK-048 induced a massive increase in mouse brain 2-AG levels without affecting brain anandamide levels. JJKK-048 appeared to be extremely potent in vivo. Activity-based protein profiling revealed that JJKK-048 maintains good selectivity toward MAGL over other serine hydrolases. Our results are also the first to show that JJKK-048 promoted significant analgesia in a writhing test with a low dose that did not cause cannabimimetic side effects. At a high dose, JJKK-048 induced analgesia both in the writhing test and in the tail-immersion test, as well as hypomotility and hyperthermia, but not catalepsy.


Assuntos
Benzodioxóis/farmacologia , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/farmacologia , Animais , Ácidos Araquidônicos/metabolismo , Comportamento Animal/efeitos dos fármacos , Benzodioxóis/efeitos adversos , Benzodioxóis/farmacocinética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Endocanabinoides/metabolismo , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacocinética , Glicerídeos/metabolismo , Hipotermia/induzido quimicamente , Masculino , Camundongos , Nociceptividade/efeitos dos fármacos , Piperidinas/efeitos adversos , Piperidinas/farmacocinética , Pirazóis/farmacologia , Rimonabanto
3.
Mol Pharmacol ; 85(3): 510-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24368842

RESUMO

Considerable progress has been made in recent years in developing selective, potent monoacylglycerol lipase (MAGL) inhibitors. In the investigations of measures to inhibit this enzyme, less attention has been paid to improving our understanding of its catalytic mechanisms or substrate preferences. In our study, we used site-directed mutagenesis, and we show via versatile activity assays combined with molecular modeling that Cys242 and Tyr194, the two opposing amino acid residues in the catalytic cavity of MAGL, play important roles in determining the rate and the isomer preferences of monoacylglycerol hydrolysis. In contrast to wild-type enzymes that hydrolyzed 1- and 2-monoacylglycerols at similar rates, mutation of Cys242 to alanine caused a significant reduction in overall activity (maximal velocity, Vmax), particularly skewing the balanced hydrolysis of isomers to favor the 2-isomer. Molecular modeling studies indicate that this was caused by structural features unfavorable toward 1-isomers as well as impaired recognition of OH-groups in the glycerol moiety. Direct functional involvement of Cys242 in the catalysis was found unlikely due to the remote distance from the catalytic serine. Unlike C242A, mutation of Tyr194 did not bias the hydrolysis of 1- and 2-monoacylglycerols but significantly compromised overall activity. Finally, mutation of Cys242 was also found to impair inhibition of MAGL, especially that by fluorophosphonate derivatives (13- to 63-fold reduction in potency). Taken together, this study provides new experimental and modeling insights into the molecular mechanisms of MAGL-catalyzed hydrolysis of the primary endocannabinoid 2-arachidonoylglycerol and related monoacylglycerols.


Assuntos
Cisteína/genética , Inibidores Enzimáticos/metabolismo , Monoacilglicerol Lipases/genética , Monoglicerídeos/metabolismo , Ácidos Araquidônicos/genética , Ácidos Araquidônicos/metabolismo , Catálise , Linhagem Celular , Cisteína/metabolismo , Endocanabinoides/genética , Endocanabinoides/metabolismo , Glicerídeos/genética , Glicerídeos/metabolismo , Células HEK293 , Humanos , Hidrólise , Monoacilglicerol Lipases/metabolismo , Monoglicerídeos/genética , Mutação/genética
4.
Chem Biol ; 20(3): 379-90, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23521796

RESUMO

Monoacylglycerol lipase (MAGL) terminates the signaling function of the endocannabinoid, 2-arachidonoylglycerol (2-AG). During 2-AG hydrolysis, MAGL liberates arachidonic acid, feeding the principal substrate for the neuroinflammatory prostaglandins. In cancer cells, MAGL redirects lipid stores toward protumorigenic signaling lipids. Thus MAGL inhibitors may have great therapeutic potential. Although potent and increasingly selective MAGL inhibitors have been described, their number is still limited. Here, we have characterized piperazine and piperidine triazole ureas that combine the high potency attributable to the triazole leaving group together with the bulky aromatic benzodioxolyl moiety required for selectivity, culminating in compound JJKK-048 that potently (IC50 < 0.4 nM) inhibited human and rodent MAGL. JJKK-048 displayed low cross-reactivity with other endocannabinoid targets. Activity-based protein profiling of mouse brain and human melanoma cell proteomes suggested high specificity also among the metabolic serine hydrolases.


Assuntos
Benzodioxóis/química , Monoacilglicerol Lipases/antagonistas & inibidores , Piperazinas/farmacologia , Piperidinas/química , Triazóis/química , Ureia/química , Ureia/farmacologia , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Camundongos , Piperazina , Ratos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA