Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38927125

RESUMO

Human health is now inextricably linked to lifestyle choices, which can either protect or predispose people to serious illnesses. The Mediterranean diet, characterized by the consumption of various medicinal plants and their byproducts, plays a significant role in protecting against ailments such as oxidative stress, cancer, and diabetes. To uncover the secrets of this natural treasure, this review seeks to consolidate diverse data concerning the pharmacology, toxicology, phytochemistry, and botany of Olea europaea L. (O. europaea). Its aim is to explore the potential therapeutic applications and propose avenues for future research. Through web literature searches (using Google Scholar, PubMed, Web of Science, and Scopus), all information currently available on O. europaea was acquired. Worldwide, ethnomedical usage of O. europaea has been reported, indicating its effectiveness in treating a range of illnesses. Phytochemical studies have identified a range of compounds, including flavanones, iridoids, secoiridoids, flavonoids, triterpenes, biophenols, benzoic acid derivatives, among others. These components exhibit diverse pharmacological activities both in vitro and in vivo, such as antidiabetic, antibacterial, antifungal, antioxidant, anticancer, and wound-healing properties. O. europaea serves as a valuable source of conventional medicine for treating various conditions. The findings from pharmacological and phytochemical investigations presented in this review enhance our understanding of its therapeutic potential and support its potential future use in modern medicine.


Assuntos
Olea , Compostos Fitoquímicos , Humanos , Olea/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Animais , Plantas Medicinais/química , Antioxidantes/farmacologia , Antioxidantes/química
2.
Alzheimers Res Ther ; 15(1): 101, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37254223

RESUMO

BACKGROUND: Increasing evidence links the gut microbiota (GM) to Alzheimer's disease (AD) but the mechanisms through which gut bacteria influence the brain are still unclear. This study tests the hypothesis that GM and mediators of the microbiota-gut-brain axis (MGBA) are associated with the amyloid cascade in sporadic AD. METHODS: We included 34 patients with cognitive impairment due to AD (CI-AD), 37 patients with cognitive impairment not due to AD (CI-NAD), and 13 cognitively unimpaired persons (CU). We studied the following systems: (1) fecal GM, with 16S rRNA sequencing; (2) a panel of putative MGBA mediators in the blood including immune and endothelial markers as bacterial products (i.e., lipopolysaccharide, LPS), cell adhesion molecules (CAMs) indicative of endothelial dysfunction (VCAM-1, PECAM-1), vascular changes (P-, E-Selectin), and upregulated after infections (NCAM, ICAM-1), as well as pro- (IL1ß, IL6, TNFα, IL18) and anti- (IL10) inflammatory cytokines; (3) the amyloid cascade with amyloid PET, plasma phosphorylated tau (pTau-181, for tau pathology), neurofilament light chain (NfL, for neurodegeneration), and global cognition measured using MMSE and ADAScog. We performed 3-group comparisons of markers in the 3 systems and calculated correlation matrices for the pooled group of CI-AD and CU as well as CI-NAD and CU. Patterns of associations based on Spearman's rho were used to validate the study hypothesis. RESULTS: CI-AD were characterized by (1) higher abundance of Clostridia_UCG-014 and decreased abundance of Moryella and Blautia (p < .04); (2) elevated levels of LPS (p < .03), upregulation of CAMs, Il1ß, IL6, and TNFα, and downregulation of IL10 (p < .05); (3) increased brain amyloid, plasma pTau-181, and NfL (p < 0.004) compared with the other groups. CI-NAD showed (1) higher abundance of [Eubacterium] coprostanoligenes group and Collinsella and decreased abundance of Lachnospiraceae_ND3007_group, [Ruminococcus]_gnavus_group and Oscillibacter (p < .03); (2) upregulation of PECAM-1 and TNFα (p < .03); (4) increased plasma levels of NfL (p < .02) compared with CU. Different GM genera were associated with immune and endothelial markers in both CI-NAD and CI-AD but these mediators were widely related to amyloid cascade markers only in CI-AD. CONCLUSIONS: Specific bacterial genera are associated with immune and endothelial MGBA mediators, and these are associated with amyloid cascade markers in sporadic AD. The physiological mechanisms linking the GM to the amyloid cascade should be further investigated to elucidate their potential therapeutic implications.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Fator de Necrose Tumoral alfa , Eixo Encéfalo-Intestino , Lipopolissacarídeos , Molécula-1 de Adesão Celular Endotelial a Plaquetas , RNA Ribossômico 16S , Interleucina-10 , Interleucina-6 , NAD , Biomarcadores , Peptídeos beta-Amiloides
3.
Foods ; 11(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35885321

RESUMO

Nowadays a possible strategy in food preservation consists of the use of active and functional packaging to improve safety and ensure a longer shelf life of food products. Many studies refer to chitosan-based films because of the already-known chitosan (CH) antibacterial and antifungal activity. In this work, we developed CH-based films containing Dried Olive Leaf Extract (DOLE) obtained by Naviglio extractor, with the aim to investigate the polyphenols yield and the antioxidant activity of this extract entrapped in CH-based-edible films. Olive tree cultivation produces a huge amount of byproducts that are usually simply burned. Phenolic compounds are already studied for their beneficial effects on human health. Some studies reported that phenols isolated from olive leaves have been shown to inhibit the growth of different strains of microorganisms. Thus, the antimicrobial effect of DOLE-containing films against bacterial strains (Salmonella enterica subsp. enterica serovar Typhimurium ATCC® 14028, Salmonella enteritidis RIVM 706, and Enterococcus faecalis ATCC® 29212) was tested in vitro. The DOLE component of the films is effective in inhibiting all the bacteria tested in a dose-dependent manner. Thus, it was demonstrated that these edible films can act as active bioplastics when used to wrap hamburgers in substitution for baking paper, which is normally used.

4.
Nutrients ; 14(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35631319

RESUMO

BACKGROUND: Non-alcoholic liver steatosis (NAS) results from an imbalance between hepatic lipid storage, disposal, and partitioning. A multifactorial diet high in fiber, monounsaturated fatty acids (MUFAs), n-6 and n-3 polyunsaturated fatty acids (PUFAs), polyphenols, and vitamins D, E, and C reduces NAS in people with type 2 diabetes (T2D) by 40% compared to a MUFA-rich diet. We evaluated whether dietary effects on NAS are mediated by changes in hepatic de novo lipogenesis (DNL), stearoyl-CoA desaturase (SCD1) activity, and/or ß-oxidation. METHODS: According to a randomized parallel group study design, 37 individuals with T2D completed an 8-week isocaloric intervention with a MUFA diet (n = 20) or multifactorial diet (n = 17). Before and after the intervention, liver fat content was evaluated by proton magnetic resonance spectroscopy, serum triglyceride fatty acid concentrations measured by gas chromatography, plasma ß-hydroxybutyrate by enzymatic method, and DNL and SCD-1 activity assessed by calculating the palmitic acid/linoleic acid (C16:0/C18:2 n6) and palmitoleic acid/palmitic acid (C16:1/C16:0) ratios, respectively. RESULTS: Compared to baseline, mean ± SD DNL significantly decreased after the multifactorial diet (2.2 ± 0.8 vs. 1.5 ± 0.5, p = 0.0001) but did not change after the MUFA diet (1.9 ± 1.1 vs. 1.9 ± 0.9, p = 0.949), with a significant difference between the two interventions (p = 0.004). The mean SCD-1 activity also decreased after the multifactorial diet (0.13 ± 0.05 vs. 0.10 ± 0.03; p = 0.001), but with no significant difference between interventions (p = 0.205). Fasting plasma ß-hydroxybutyrate concentrations did not change significantly after the MUFA or multifactorial diet. Changes in the DNL index significantly and positively correlated with changes in liver fat (r = 0.426; p = 0.009). CONCLUSIONS: A diet rich in multiple beneficial dietary components (fiber, polyphenols, MUFAs, PUFAs, and other antioxidants) compared to a diet rich only in MUFAs further reduces liver fat accumulation through the inhibition of DNL. Registered under ClinicalTrials.gov no. NCT03380416.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Ácido 3-Hidroxibutírico , Dieta , Humanos , Lipogênese , Ácido Palmítico , Polifenóis , Estearoil-CoA Dessaturase/metabolismo
5.
Antioxidants (Basel) ; 11(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35204071

RESUMO

In this work, we assess the potential of waste products of Phlegrean mandarin (Citrus reticulata Blanco), namely seeds and peel, to be reutilized as a source of bioactive compounds beneficial for the human diet. Starting from the evidence that the by-products of this specific cultivar are the most powerful sources of antioxidants compared to pulp, we have investigated if and how the bioactive compounds in peel and seeds may be affected by fruit ripening. Three stages of fruit ripening have been considered in our study: unripe fruits = UF, semi-ripe fruits = SRF, ripe fruits = RF. The overall results indicated that RF showed the highest concentration of antioxidants. Among fruit components, peel was the richest in total antioxidant capacity, total polyphenol content, total flavonoids, total chlorophylls and carotenoids, while seeds exhibited the highest concentration of total condensed tannins and ascorbic acid. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay indicates the occurrence, in peel extracts, of 28 phenolic compounds, mainly flavonoids (FLs); in seeds, 34 derivatives were present in the first stage (UF), which diminish to 24 during the ripening process. Our data indicated that the content of phytochemicals in citrus strongly varies among the fruit components and depends on the ripening stage. The higher antioxidant activity of peel and seeds, especially in RF, encourage a potential use of by-products of this specific citrus cultivar for industrial or pharmacological applications. However, to maximize the occurrence of desired bioactive compounds, it is important also to consider the ripening stage at which fruits must be collected.

6.
Foods ; 10(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34828960

RESUMO

Stryphnodendron rotundifolium Mart., popularly known as "barbatimão", is a plant species traditionally used by topical and oral routes for the treatment of infectious and inflammatory diseases. Considering the well-described antioxidant properties of this species, this study investigated the protective effects of its keto-aqueous extract using an in vitro model of iron overload. Phenolic compounds were quantified and identified by Ultra-Performance Liquid Chromatography coupled with quadrupole Time-Of-Flight Electrospray Ionization Mass Spectrometry (UPLC-ESI-qTOF-MS/MS) in positive and negative ions mode analysis. Antioxidant activity was analyzed following the iron-chelating-reducing capacity and deoxyribose degradation (2-DR) protection methods. The analysis identified condensed tannins (54.8 mg catechin/g dry fraction (DF), polyphenols (25 mg gallic acid/g DF), and hydrolyzable tannins (28.8 mg tannic acid/g DF). Among the constituents, prodelphinidin, procyanidin, and prorobinetinidine were isolated and identified. The extract significantly protected 2-DR degradation induced by Fe2+ (72% protection) or •OH (43% protection). The ortho-phenanthroline test revealed Fe2+-chelating and Fe3+-reducing activities of 93% and 84%, respectively. A preliminary toxicological analysis using Artemia salina revealed mortality below 10%, at a concentration of 0.25 mg/mL, indicating low toxicity under the present experimental conditions. In conclusion, the findings of the present study indicate that Stryphnodendron rotundifolium is a source of antioxidant compounds with the potential to be used in drug development in the context of iron overload disorders, which remains to be further investigated in vivo.

7.
J Alzheimers Dis ; 78(2): 683-697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33074224

RESUMO

BACKGROUND: Metagenomic data support an association between certain bacterial strains and Alzheimer's disease (AD), but their functional dynamics remain elusive. OBJECTIVE: To investigate the association between amyloid pathology, bacterial products such as lipopolysaccharide (LPS) and short chain fatty acids (SCFAs: acetate, valerate, butyrate), inflammatory mediators, and markers of endothelial dysfunction in AD. METHODS: Eighty-nine older persons with cognitive performance from normal to dementia underwent florbetapir amyloid PET and blood collection. Brain amyloidosis was measured with standardized uptake value ratio versus cerebellum. Blood levels of LPS were measured by ELISA, SCFAs by mass spectrometry, cytokines by using real-time PCR, and biomarkers of endothelial dysfunction by flow cytometry. We investigated the association between the variables listed above with Spearman's rank test. RESULTS: Amyloid SUVR uptake was positively associated with blood LPS (rho≥0.32, p≤0.006), acetate and valerate (rho≥0.45, p < 0.001), pro-inflammatory cytokines (rho≥0.25, p≤0.012), and biomarkers of endothelial dysfunction (rho≥0.25, p≤0.042). In contrast, it was negatively correlated with butyrate (rho≤-0.42, p≤0.020) and the anti-inflammatory cytokine IL10 (rho≤-0.26, p≤0.009). Endothelial dysfunction was positively associated with pro-inflammatory cytokines, acetate and valerate (rho≥0.25, p≤0.045) and negatively with butyrate and IL10 levels (rho≤-0.25, p≤0.038). CONCLUSION: We report a novel association between gut microbiota-related products and systemic inflammation with brain amyloidosis via endothelial dysfunction, suggesting that SCFAs and LPS represent candidate pathophysiologic links between the gut microbiota and AD pathology.


Assuntos
Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Disbiose/metabolismo , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/fisiologia , Lipopolissacarídeos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Biomarcadores/metabolismo , Disbiose/diagnóstico por imagem , Disbiose/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos
8.
Antioxidants (Basel) ; 9(6)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545447

RESUMO

Peel, pulp and seed extracts of three mandarin varieties, namely Phlegraean mandarin (Citrus reticulata), Kumquat (Citrus japonica), and Clementine (Citrus clementina) were compared and characterised in terms of photosynthetic pigment content, total polyphenols amount, antioxidant activity and vitamin C to assess the amount of functional compounds for each cultivar. The highest polyphenols content was found in the Phlegraean mandarin, especially in peel and seeds, whereas Kumquat exhibited the highest polyphenols amount in the pulp. The antioxidant activity was higher in the peel of Phlegraean mandarin and clementine compared to Kumquat, which showed the highest value in the pulp. The antioxidant activity peaked in the seeds of Phlegraean mandarin. The vitamin C in the Phlegraean mandarin was the highest in all parts of the fruit, especially in the seeds. Total chlorophyll content was comparable in the peel of different cultivars, in the pulp the highest amount was found in clementine, whereas kumquat seeds showed the greatest values. As regards total carotenoids, peel and pulp of clementine exhibited higher values than the other two cultivars, whereas the kumquat seeds were the richest in carotenoids. Among the analysed cultivars Phlegraean mandarin may be considered the most promising as a source of polyphenols and antioxidants, compared to the clementine and Kumquat, especially for the functional molecules found in the seeds. Moreover, regardless of cultivars this study also highlights important properties in the parts of the fruit generally considered wastes.

9.
Diagnostics (Basel) ; 9(4)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689994

RESUMO

Nasal polyposis is characterized by benign, non-cancerous and painless growths originating in the tissue of the nasal cavities and paranasal sinuses. Polyps arise from chronic inflammation due to asthma, recurrent infections, allergies, drug sensitivity or immune disorders. They can obstruct the nasal cavities and thus cause respiratory problems, a reduction in the sense of smell and susceptibility to infections. Furthermore, nasal polyps can recur. Hence the importance of using valid diagnostic methods. In this work, the diagnostic investigation carried out by scanning electron microscopy (SEM) and nasal cytology led, for the first time, to the identification of a mycoplasma superinfection on nasal polyposis.

11.
Heliyon ; 5(4): e01526, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31025024

RESUMO

In the current era of high consumption and increasing waste, many products that are believed to be unusable can find a new purpose in the market. For example, the grape peel waste resulting from the production of wine contains numerous bioactive compounds. In reality, grape peels are by-products of winemaking that can be conveniently reused in many different ways, including agronomic use and cosmetic industry applications. Moreover, the by-products can also be used in the energy field as biomass for the production of biogas or in food plants for the production of energy. In this article, to extract polyphenols, grape peels were processed via a cyclically pressurized extraction method known as rapid solid-liquid dynamic extraction (RSLDE), which does not require the use of any organic solvent or include heating or cooling processes that can cause the loss of substances of interest. To better understand the cyclically pressurized extraction process, a numerical simulation was performed to evaluate the exchange between the grape piece solid matrix and water during the extraction process. Furthermore, a finite element model was used to numerically determine the time-dependent concentration distribution at specific times.

12.
Nutrients ; 10(11)2018 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-30400278

RESUMO

Iron deficiency represents a widespread problem for a large part of the population, especially for women, and has received increasing attention in food/supplement research. The contraindications of the iron supplements commercially available (e.g., imbalances in the levels of other essential nutrients, low bioavailability, etc.) led us to search for a possible alternative. In the present work, a rapid and easy method to synthetize a solid iron (II) citrate complex from iron filings and citric acid was developed to serve, eventually, as a food supplement or additive. In order to state its atomic composition and purity, an assortment of analytical techniques was employed (e.g., combustion analysis, thermogravimetry, X-ray diffractometry, UV/Vis spectrophotometry, etc.). Results demonstrate that the synthesized crystalline solid corresponds to the formula FeC6H6O7∙H2O and, by consequence, contains exclusively iron (II), which is an advantage with respect to existing commercial products, because iron (II) is better absorbed than iron (III) (high bioavailability of iron).


Assuntos
Ácido Cítrico/química , Ferro da Dieta/síntese química , Ferro/química , Disponibilidade Biológica , Carbono/análise , Suplementos Nutricionais , Ferro da Dieta/farmacocinética , Modelos Teóricos , Termogravimetria , Difração de Raios X
13.
Foods ; 7(10)2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287795

RESUMO

Ultrasound is composed of mechanical sound waves that originate from molecular movements that oscillate in a propagation medium. The waves have a very high frequency, equal to approximately 20 kHz, are divided into two categories (i.e., low-intensity and high-intensity waves) and cannot be perceived by the human ear. Nature has created the first ultrasound applications. Bats use ultrasound to navigate in the dark, and many cetaceans use echolocation to detect prey or obstacles using ultrasound produced by their vocal system. Ultrasound is commonly associated with the biomedical field. Today, ultrasound-based methods and equipment are available to detect organs, motion, tumour masses, and pre/post-natal handicaps, and for kidney stone removal, physiotherapy, and aesthetic cures. However, ultrasound has found multiple applications in many other fields as well. In particular, ultrasound has recently been used in the food industry to develop various effective and reliable food processing applications. Therefore, this review summarizes the major applications of ultrasound in the food industry. The most common applications in the food industry include cell destruction and extraction of intracellular material. Depending on its intensity, ultrasound is used for the activation or deactivation of enzymes, mixing and homogenization, emulsification, dispersion, preservation, stabilization, dissolution and crystallization, hydrogenation, tenderization of meat, ripening, ageing and oxidation, and as an adjuvant for solid-liquid extraction for maceration to accelerate and to improve the extraction of active ingredients from different matrices, as well as the degassing and atomization of food preparations.

14.
Foods ; 7(7)2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29986416

RESUMO

This research aimed to determine the effects of cryo-maceration at different temperatures on polyphenol content during the winemaking process of Chardonnay wine. Samples of Chardonnay grapes were subjected to rapid cooling processes by direct injection of liquid CO2 to obtain final temperatures of 10.0, 8.0, 6.0 and 4.0 °C and yield different batches of grape mash. Subsequently, each batch underwent the winemaking process to produce four different wines. The wines obtained were characterized by chemical analyses. We observed higher extraction of polyphenolic compounds with low-temperature cold maceration, particularly when the temperature was reduced from 10.0 to 6.0 °C. Conversely, when the temperature was reduced below 6.0 °C, the increase in polyphenol content in wine was negligible, whereas CO2 consumption increased. Furthermore, a numerical simulation was performed to determine the pipe length, L0, after which the temperature was constant. This condition is very important because it guarantees that after the length L0, the thermodynamic exchange between liquid CO2 and is complete, eliminating the possibility of liquid CO2 pockets in the cyclone.

15.
Arch Biochem Biophys ; 646: 1-9, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29580945

RESUMO

Grape pomace, the major byproduct of the wine and juice industry, is a relevant source of bioactive phenolic compounds. However, polyphenol bioavailability in humans is not well understood, and the inter-individual variability in the production of phenolic metabolites has not been comprehensively assessed to date. The pharmacokinetic and excretive profiles of phenolic metabolites after the acute administration of a drink made from red grape pomace was here investigated in ten volunteers. A total of 35 and 28 phenolic metabolites were quantified in urine and plasma, respectively. The main circulating metabolites included phenyl-γ-valerolactones, hydroxybenzoic acids, simple phenols, hydroxyphenylpropionic acids, hydroxycinnamates, and (epi)catechin phase II conjugates. A high inter-individual variability was shown both in urine and plasma samples, and different patterns of circulating metabolites were unravelled by applying unsupervised multivariate analysis. Besides the huge variability in the production of microbial metabolites of colonic origin, an important variability was observed due to phase II conjugates. These results are of interest to further understand the potential health benefits of phenolic metabolites on individual basis.


Assuntos
Extratos Vegetais/análise , Extratos Vegetais/farmacocinética , Polifenóis/análise , Polifenóis/farmacocinética , Vitis/química , Adulto , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Humanos , Masculino , Extratos Vegetais/sangue , Extratos Vegetais/urina , Polifenóis/sangue , Polifenóis/urina , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Adulto Jovem
16.
Antioxidants (Basel) ; 6(3)2017 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-28805683

RESUMO

Portulaca oleracea is a wild plant pest of orchards and gardens, but is also an edible vegetable rich in beneficial nutrients. It possesses many antioxidant properties due to the high content of vitamins, minerals, omega-3 essential fatty acids and other healthful compounds; therefore, the intake of purslane and/or its bioactive compounds could help to improve the health and function of the whole human organism. Accordingly, in this work it was analyzed and compared to the extractive capacity of the antioxidant component of purslane leaves obtained by solid-liquid extraction techniques such as: hot-maceration, maceration with ultrasound, rapid solid-liquid dynamic extraction using the Naviglio extractor, and a combination of two techniques (mix extraction). The chromatographic analysis by High Performance Liquid Chromatography (HPLC) of the methanolic extract of dried purslane leaves allowed the identification of various polyphenolic compounds for comparison with the standards. In addition, the properties of the different extracts were calculated on dry matter and the antioxidant properties of the total polyphenol components analyzed by the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay. The results showed that mix extraction was the most efficient compared to other techniques. In fact, it obtained a quantity of polyphenols amounting to 237.8 mg Gallic Acid Equivalents (GAE)/100 g of fresh weight, while in other techniques, the range varied from 60-160 mg GAE/100 g fresh weight. In addition, a qualitative analysis by Liquid Chromatography-Tandem Mass Spectrometry (LC/MS/MS) of the phenolic compounds present in the purslane leaves examined was carried out. The compounds were identified by comparison of their molecular weight, fragmentation pattern and retention time with those of standards, using the "Multiple Reaction Monitoring" mode (MRM). Therefore, this study allowed the re-evaluation of a little-known plant that possesses as its beneficial properties, a great potential for use in both the food and the nutraceuticals and cosmetic field.

17.
J Cell Physiol ; 232(5): 922-927, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27739063

RESUMO

Cancer is a major public health problem and the second leading cause of mortality around the world. Although continuous advances in the science of oncology and cancer research are now leading to improved outcomes for many cancer patients, novel cancer treatment options are strongly demanded. Naturally occurring compounds from a variety of vegetables, fruits, and medicinal plants have been shown to exhibit various anticancer properties in a number of in vitro and in vivo studies and represent an attractive research area for the development of new therapeutic strategies to fight cancer. Forskolin is a diterpene produced by the roots of the Indian plant Coleus forskohlii. The natural compound forskolin has been used for centuries in traditional medicine and its safety has also been documented in conventional modern medicine. Forskolin directly activates the adenylate cyclase enzyme, that generates cAMP from ATP, thus, raising intracellular cAMP levels. Notably, cAMP signaling, through the PKA-dependent and/or -independent pathways, is very relevant to cancer and its targeting has shown a number of antitumor effects, including the induction of mesenchymal-to-epithelial transition, inhibition of cell growth and migration and enhancement of sensitivity to conventional antitumor drugs in cancer cells. Here, we describe some features of cAMP signaling that are relevant to cancer biology and address the state of the art concerning the natural cAMP elevating compound forskolin and its perspectives as an effective anticancer agent. J. Cell. Physiol. 232: 922-927, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Colforsina/uso terapêutico , AMP Cíclico/metabolismo , Neoplasias/tratamento farmacológico , Animais , Colforsina/química , Colforsina/farmacologia , Humanos , Modelos Biológicos , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos
18.
Nutrition ; 32(2): 217-21, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26706023

RESUMO

OBJECTIVE: Short chain fatty acids (SCFAs) derived from dietary fiber fermentation by gut microbiota have been identified as one of the mechanisms behind the association between habitual whole-grain intake and a lower risk of cardiometabolic diseases. The aims of the present work are: (1) to evaluate whether a whole-grain wheat-based diet may increase SCFAs concentration, and (2) to identify possible associations between SCFAs and metabolic changes observed after the nutritional intervention. METHODS: Fifty-four subjects participated in the trial. They underwent a 12-wk dietary intervention based on whole-grain or refined cereal products. At baseline and after the intervention, glucose, insulin, triacylglycerol, inflammatory markers (hs-CRP, IL-1 ra, IL-6, and TNF-α), and SCFAs plasma concentrations were evaluated. RESULTS: After the intervention, in the whole-grain group fasting plasma propionate concentrations were higher than at baseline, whereas a reduction was detected in the control group. The absolute changes (end of trial minus baseline) in fasting plasma propionate concentrations were significantly different between the two groups (P = 0.048). The absolute changes of fasting propionate correlated with cereal fiber intake (r = 0.358, P = 0.023), but no significant correlations with clinical outcomes were found. However, postprandial insulin was significantly decreased in the group having the absolute changes of fasting propionate concentration above the median value (P = 0.022 versus subjects with fasting propionate changes below the median value). CONCLUSIONS: A 12-wk whole-grain wheat-based diet increases fasting plasma propionate. This increase correlates with the cereal fiber intake and is associated with lower postprandial insulin concentrations.


Assuntos
Dieta , Ácidos Graxos Voláteis/sangue , Síndrome Metabólica/sangue , Grãos Integrais , Acetatos/sangue , Biomarcadores/sangue , Glicemia/metabolismo , Índice de Massa Corporal , Butiratos/sangue , Proteína C-Reativa/metabolismo , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Fibras na Dieta/administração & dosagem , Ingestão de Energia , Feminino , Humanos , Insulina/sangue , Interleucina-1alfa/sangue , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Sobrepeso/sangue , Cooperação do Paciente , Período Pós-Prandial , Propionatos/sangue , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/sangue
19.
Nat Prod Commun ; 10(7): 1293-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26411033

RESUMO

Essential oils from Rosmarinus officinalis, Salvia officinalis, Thymus vulgaris, Melissa officinalis and Mentha spicata growing wild in the "Piana del Sele" (Salerno, Southern Italy) have been extracted by hydro-distillation, quantified and characterized by gas chromatography coupled with flame ionization detection (FID) and mass-spectrometry (MS). Sixty-nine compounds were identified and classified according to their chemical classes. The results showed that the composition of the essential oils was extremely variable and specific for each botanical species. Hydrocarbons were the most abundant class in all essential oils except for sage where aldehydes and ketones were the most representative compounds. Only for thyme was a higher content of alcohols found.


Assuntos
Lamiaceae/química , Óleos Voláteis/química , Compostos Orgânicos/análise , Cromatografia Gasosa-Espectrometria de Massas , Itália , Compostos Orgânicos/química
20.
Front Biosci (Landmark Ed) ; 20(8): 1234-49, 2015 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-25961554

RESUMO

Despite the intense scientific efforts made, there are still many tumors that are difficult to treat and the percentage of patient survival in the long-term is still too low. Thus, new approaches to the treatment of cancer are needed. Cancer is a highly heterogeneous and complex disease, whose development requires a reorganization of cell metabolism. Most tumor cells downregulate mitochondrial oxidative phosphorylation and increase the rate of glucose consumption and lactate release, independently of oxygen availability (Warburg effect). This metabolic rewiring is largely believed to favour tumor growth and survival, although the underlying molecular mechanisms are not completely understood. Importantly, the correlation between the aerobic glycolysis and cancer is widely regarded as a useful biochemical basis for the development of novel anticancer strategies. Among the enzymes involved in glycolysis, lactate dehydrogenase (LDH) is emerging as a very attractive target for possible pharmacological approaches in cancer therapy. This review addresses the state of the art and the perspectives concerning LDH both as a useful diagnostic marker and a relevant molecular target in cancer therapy and management.


Assuntos
L-Lactato Desidrogenase/genética , Neoplasias/enzimologia , Biomarcadores Tumorais/metabolismo , Progressão da Doença , Glicólise/fisiologia , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/fisiologia , Metástase Neoplásica/genética , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA