Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Blood ; 141(22): 2738-2755, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857629

RESUMO

Primary resistance to tyrosine kinase inhibitors (TKIs) is a significant barrier to optimal outcomes in chronic myeloid leukemia (CML), but factors contributing to response heterogeneity remain unclear. Using single-cell RNA (scRNA) sequencing, we identified 8 statistically significant features in pretreatment bone marrow, which correlated with either sensitivity (major molecular response or MMR) or extreme resistance to imatinib (eventual blast crisis [BC] transformation). Employing machine-learning, we identified leukemic stem cell (LSC) and natural killer (NK) cell gene expression profiles predicting imatinib response with >80% accuracy, including no false positives for predicting BC. A canonical erythroid-specifying (TAL1/KLF1/GATA1) regulon was a hallmark of LSCs from patients with MMR and was associated with erythroid progenitor [ERP] expansion in vivo (P < .05), and a 2- to 10-fold (6.3-fold in group A vs 1.09-fold in group C) erythroid over myeloid bias in vitro. Notably, ERPs demonstrated exquisite TKI sensitivity compared with myeloid progenitors (P < .001). These LSC features were lost with progressive resistance, and MYC- and IRF1-driven inflammatory regulons were evident in patients who progressed to transformation. Patients with MMR also exhibited a 56-fold expansion (P < .01) of a normally rare subset of hyperfunctional adaptive-like NK cells, which diminished with progressive resistance, whereas patients destined for BC accumulated inhibitory NKG2A+ NK cells favoring NK cell tolerance. Finally, we developed antibody panels to validate our scRNA-seq findings. These panels may be useful for prospective studies of primary resistance, and in assessing the contribution of predetermined vs acquired factors in TKI response heterogeneity.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Inibidores de Proteínas Quinases , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Estudos Prospectivos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Crise Blástica , Resistencia a Medicamentos Antineoplásicos/genética
2.
Nat Genet ; 54(7): 963-975, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35773407

RESUMO

The consensus molecular subtype (CMS) classification of colorectal cancer is based on bulk transcriptomics. The underlying epithelial cell diversity remains unclear. We analyzed 373,058 single-cell transcriptomes from 63 patients, focusing on 49,155 epithelial cells. We identified a pervasive genetic and transcriptomic dichotomy of malignant cells, based on distinct gene expression, DNA copy number and gene regulatory network. We recapitulated these subtypes in bulk transcriptomes from 3,614 patients. The two intrinsic subtypes, iCMS2 and iCMS3, refine CMS. iCMS3 comprises microsatellite unstable (MSI-H) cancers and one-third of microsatellite-stable (MSS) tumors. iCMS3 MSS cancers are transcriptomically more similar to MSI-H cancers than to other MSS cancers. CMS4 cancers had either iCMS2 or iCMS3 epithelium; the latter had the worst prognosis. We defined the intrinsic epithelial axis of colorectal cancer and propose a refined 'IMF' classification with five subtypes, combining intrinsic epithelial subtype (I), microsatellite instability status (M) and fibrosis (F).


Assuntos
Neoplasias Colorretais , Neoplasias Epiteliais e Glandulares , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células Epiteliais/patologia , Humanos , Instabilidade de Microssatélites , Repetições de Microssatélites/genética , Neoplasias Epiteliais e Glandulares/genética , Transcriptoma/genética
3.
Nucleic Acids Res ; 49(15): 8505-8519, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34320202

RESUMO

The transcriptomic diversity of cell types in the human body can be analysed in unprecedented detail using single cell (SC) technologies. Unsupervised clustering of SC transcriptomes, which is the default technique for defining cell types, is prone to group cells by technical, rather than biological, variation. Compared to de-novo (unsupervised) clustering, we demonstrate using multiple benchmarks that supervised clustering, which uses reference transcriptomes as a guide, is robust to batch effects and data quality artifacts. Here, we present RCA2, the first algorithm to combine reference projection (batch effect robustness) with graph-based clustering (scalability). In addition, RCA2 provides a user-friendly framework incorporating multiple commonly used downstream analysis modules. RCA2 also provides new reference panels for human and mouse and supports generation of custom panels. Furthermore, RCA2 facilitates cell type-specific QC, which is essential for accurate clustering of data from heterogeneous tissues. We demonstrate the advantages of RCA2 on SC data from human bone marrow, healthy PBMCs and PBMCs from COVID-19 patients. Scalable supervised clustering methods such as RCA2 will facilitate unified analysis of cohort-scale SC datasets.


Assuntos
Algoritmos , Análise por Conglomerados , RNA Citoplasmático Pequeno/genética , RNA-Seq/métodos , Análise de Célula Única/métodos , Animais , Artrite Reumatoide/genética , Células da Medula Óssea/metabolismo , COVID-19/sangue , COVID-19/patologia , Estudos de Coortes , Conjuntos de Dados como Assunto , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Camundongos , Especificidade de Órgãos , Controle de Qualidade , RNA-Seq/normas , Análise de Célula Única/normas , Transcriptoma
4.
Mol Oncol ; 11(8): 927-944, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28378523

RESUMO

Glioblastoma (GBM) is the most frequent and most malignant primary brain tumour in adults. GBMs have a unique landscape of somatic copy number alterations (SCNAs), with the concomitant appearance of numerous driver amplifications and deletions. Here, we examined the genomic regions harbouring SCNAs and their impact on the GBM miRNome. We found that 40% of SCNA events covering 70-88% of the genomically altered regions, as identified by GISTIC and RAE algorithms, carried miRNA genes. Of 1426 annotated mature miRNAs analysed, ~ 14% (n = 198) were mapped to such fragile loci. Further, we identified an intragenic miRNA, miR-4484 located on chromosome-10, as a deleted and downregulated miRNA in GBM. miR-4484 exhibited a strong positive correlation with the expression of its host gene uroporphyrinogen III synthase (UROS), thereby indicating that the loss of miR-4484 is a codeletion event in GBM. Overexpression of miR-4484 reduced the colony-forming ability and suppressed the migratory capacity of glioma cells. Analysis of the RNA-seq-derived transcriptome upon exogenous miR-4484 overexpression in conjunction with an integrative bioinformatics approach revealed several putative targets of miR-4484. Unbiased functional enrichment of these targets through DAVID identified a cohort of important gene ontology terms, which possibly explain the functional role of miR-4484 in gliomagenesis. Selected targets were validated and, importantly, were found to be upregulated in GBM. In brief, our study identified a panel of miRNAs that are likely to be regulated by genomic deletions and amplifications. Further, miR-4484 was found to be deleted and acts as a tumour suppressor miRNA in GBM.


Assuntos
Neoplasias Encefálicas/genética , Deleção de Genes , Genes Supressores de Tumor , Glioblastoma/metabolismo , MicroRNAs/genética , RNA Neoplásico/genética , Adulto , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Feminino , Dosagem de Genes , Glioblastoma/genética , Humanos , Masculino , MicroRNAs/metabolismo
5.
Mol Cancer ; 15(1): 74, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27871300

RESUMO

BACKGROUND: Glioblastomas (GBM) continue to remain one of the most dreaded tumours that are highly infiltrative in nature and easily preclude comprehensive surgical resection. GBMs pose an intricate etiology as they are being associated with a plethora of genetic and epigenetic lesions. Misregulation of the PI3 kinase pathway is one of the most familiar events in GBM. While the PI3 kinase signalling regulated pathways and genes have been comprehensively studied, its impact on the miRNome is yet to be explored. The objective of this study was to elucidate the PI3 kinase pathway regulated miRNAs in GBM. METHODS: miRNA expression profiling was conducted to monitor the differentially regulated miRNAs upon PI3 kinase pathway abrogation. qRT-PCR was used to measure the abundance of miR-326 and its host gene encoded transcript. Proliferation assay, colony suppression assay and wound healing assay were carried out in pre-miR transfected cells to investigate its role in malignant transformation. Potential targets of miR-326 were identified by transcriptome analysis of miR-326 overexpressing cells by whole RNA sequencing and selected targets were validated. Several publically available data sets were used for various investigations described above. RESULTS: We identified several miRNA that were regulated by PI3 kinase pathway. miR-326, a GBM downregulated miRNA, was validated as one of the miRNAs whose expression was alleviated upon abrogation of the PI3 kinase pathway. Overexpression of miR-326 resulted in reduced proliferation, colony suppression and hindered the migration capacity of glioma cells. Arrestin, Beta 1 (ARRB1), the host gene of miR-326, was also downregulated in GBM and interestingly, the expression of ARRB1 was also alleviated upon inhibition of the PI3 kinase pathway, indicating similar regulation pattern. More importantly, miR-326 exhibited a significant positive correlation with ARRB1 in terms of its expression. Transcriptome analysis upon miR-326 overexpression coupled with integrative bioinformatics approach identified several putative targets of miR-326. Selected targets were validated and interestingly found to be upregulated in GBM. CONCLUSIONS: Taken together, our study uncovered the PI3 kinase regulated miRNome in GBM. miR-326, a PI3 kinase pathway inhibited miRNA, was demonstrated as a tumour suppressor miRNA in GBM.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais , Transcriptoma , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Genes Supressores de Tumor , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Interferência de RNA , beta-Arrestina 1/genética
6.
Sci Rep ; 6: 27753, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27291091

RESUMO

Glioblastomas (GBM) are the most malignant form of astrocytomas which are difficult to treat and portend a grave clinical course and poor prognosis. In this study, we identified Chromobox homolog 7 (Cbx7), a member of Polycomb Repressive Complex 1 (PRC1), as a downregulated gene in GBM owing to its promoter hypermethylation. Bisulphite sequencing and methylation inhibitor treatment established the hypermethylation of Cbx7 in GBM. Exogenous overexpression of Cbx7 induced cell death, inhibited cell proliferation, colony formation and migration/invasion of the glioma cells. GSEA of Cbx7 regulated genes identified Cbx7 as a repressor of transcription co-activators YAP/TAZ, the inhibitory targets of the Hippo signalling pathway. In good correlation, the exogenous expression of Cbx7 repressed the YAP/TAZ-dependent transcription and downregulated CTGF, a bonafide YAP/TAZ target. We also observed reduced levels of phospho-JNK in Cbx7 expressing cells. Additionally, CTGF silencing and pharmacological inhibition of JNK also inhibited glioma cell migration. Further, Cbx7 failed to inhibit cell migration significantly in the presence of exogenously overexpressed CTGF or constitutively active JNK. Thus, our study identifies Cbx7 as an inhibitor of glioma cell migration through its inhibitory effect on YAP/TAZ-CTGF-JNK signalling axis and underscores the importance of epigenetic inactivation of Cbx7 in gliomagenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Encefálicas/genética , Metilação de DNA , Regulação para Baixo , Glioblastoma/genética , Fosfoproteínas/genética , Complexo Repressor Polycomb 1/genética , Fatores de Transcrição/genética , Aciltransferases , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Humanos , Proteínas Serina-Treonina Quinases/genética , Análise de Sequência de DNA , Transdução de Sinais , Transcrição Gênica , Proteínas de Sinalização YAP
7.
J Biol Chem ; 286(29): 25882-90, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21613208

RESUMO

Glioblastoma is the most common and malignant form of primary astrocytoma. Upon investigation of the insulin-like growth factor (IGF) pathway, we found the IGF2BP3/IMP3 transcript and protein to be up-regulated in GBMs but not in lower grade astrocytomas (p < 0.0001). IMP3 is an RNA binding protein known to bind to the 5'-untranslated region of IGF-2 mRNA, thereby activating its translation. Overexpression- and knockdown-based studies establish a role for IMP3 in promoting proliferation, anchorage-independent growth, invasion, and chemoresistance. IMP3 overexpressing B16F10 cells also showed increased tumor growth, angiogenesis, and metastasis, resulting in poor survival in a mouse model. Additionally, the infiltrating front, perivascular, and subpial regions in a majority of the GBMs stained positive for IMP3. Furthermore, two different murine glioma models were used to substantiate the above findings. In agreement with the translation activation functions of IMP3, we also found increased IGF-2 protein in the GBM tumor samples without a corresponding increase in its transcript levels. Also, in vitro IMP3 overexpression/knockdown modulated the IGF-2 protein levels without altering its transcript levels. Additionally, IGF-2 neutralization and supplementation studies established that the proproliferative effects of IMP3 were indeed mediated through IGF-2. Concordantly, PI3K and MAPK, the downstream effectors of IGF-2, are activated by IMP3 and are found to be essential for IMP3-induced cell proliferation. Thus, we have identified IMP3 as a GBM-specific proproliferative and proinvasive marker acting through IGF-2 resulting in the activation of oncogenic PI3K and MAPK pathways.


Assuntos
Biomarcadores Tumorais/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Fator de Crescimento Insulin-Like II/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Ligação a RNA/metabolismo , Adolescente , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/genética , Glioblastoma/fisiopatologia , Humanos , Fator de Crescimento Insulin-Like II/biossíntese , Fator de Crescimento Insulin-Like II/genética , Camundongos , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Invasividade Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Biossíntese de Proteínas , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Análise de Sobrevida , Regulação para Cima , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA