Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroradiol J ; 37(1): 107-118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37931176

RESUMO

BACKGROUND AND OBJECTIVE: 200 kHz tumor treating fields (TTFields) is clinically approved for newly-diagnosed glioblastoma (nGBM). Because its effects on conventional surveillance MRI brain scans are equivocal, we investigated its effects on perfusion MRI (pMRI) brain scans. METHODS: Each patient underwent institutional standard pMRI: dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast (DSC) pMRI at three time points: baseline, 2-, and 6-months on-adjuvant therapy. At each timepoint, the difference between T1 pre- versus post-contrast tumor volume (ΔT1) and these pMRI metrics were evaluated: normalized and standardized relative cerebral blood volume (nRCBV, sRCBV); fractional plasma volume (Vp), volume of extravascular extracellular space (EES) per volume of tissue (Ve), blood-brain barrier (BBB) permeability (Ktrans), and time constant for gadolinium reflux from EES back into the vascular system (Kep). Between-group comparisons were performed using rank-sum analysis, and bootstrapping evaluated likely reproducibility of the results. RESULTS: Among 13 pMRI datasets (11 nGBM, 2 recurrent GBM), therapies included temozolomide-only (n = 9) and temozolomide + TTFields (n = 4). No significant differences were found in patient or tumor characteristics. Compared to temozolomide-only, temozolomide + TTFields did not significantly affect the percent-change in pMRI metrics from baseline to 2 months. But during the 2- to 6-month period, temozolomide + TTFields significantly increased the percent-change in nRCBV (+26.9% [interquartile range 55.1%] vs -39.1% [37.0%], p = 0.049), sRCBV (+9.5% [39.7%] vs -30.5% [39.4%], p = 0.049), Ktrans (+54.6% [1768.4%] vs -26.9% [61.2%], p = 0.024), Ve (+111.0% [518.1%] vs -13.0% [22.5%], p = 0.048), and Vp (+98.8% [2172.4%] vs -24.6% [53.3%], p = 0.024) compared to temozolomide-only. CONCLUSION: Using pMRI, we provide initial in-human validation of pre-clinical studies regarding the effects of TTFields on tumor blood volume and BBB permeability in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Temozolomida/uso terapêutico , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/patologia , Volume Sanguíneo Cerebral , Reprodutibilidade dos Testes , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Imageamento por Ressonância Magnética/métodos , Meios de Contraste
2.
Clin Cancer Res ; 27(23): 6467-6478, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475101

RESUMO

PURPOSE: Pyruvate kinase M2 (PKM2) catalyzes the final step in glycolysis, a key process of cancer metabolism. PKM2 is preferentially expressed by glioblastoma (GBM) cells with minimal expression in healthy brain. We describe the development, validation, and translation of a novel PET tracer to study PKM2 in GBM. We evaluated 1-((2-fluoro-6-[18F]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([18F]DASA-23) in cell culture, mouse models of GBM, healthy human volunteers, and patients with GBM. EXPERIMENTAL DESIGN: [18F]DASA-23 was synthesized with a molar activity of 100.47 ± 29.58 GBq/µmol and radiochemical purity >95%. We performed initial testing of [18F]DASA-23 in GBM cell culture and human GBM xenografts implanted orthotopically into mice. Next, we produced [18F]DASA-23 under FDA oversight, and evaluated it in healthy volunteers and a pilot cohort of patients with glioma. RESULTS: In mouse imaging studies, [18F]DASA-23 clearly delineated the U87 GBM from surrounding healthy brain tissue and had a tumor-to-brain ratio of 3.6 ± 0.5. In human volunteers, [18F]DASA-23 crossed the intact blood-brain barrier and was rapidly cleared. In patients with GBM, [18F]DASA-23 successfully outlined tumors visible on contrast-enhanced MRI. The uptake of [18F]DASA-23 was markedly elevated in GBMs compared with normal brain, and it identified a metabolic nonresponder within 1 week of treatment initiation. CONCLUSIONS: We developed and translated [18F]DASA-23 as a new tracer that demonstrated the visualization of aberrantly expressed PKM2 for the first time in human subjects. These results warrant further clinical evaluation of [18F]DASA-23 to assess its utility for imaging therapy-induced normalization of aberrant cancer metabolism.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/patologia , Compostos de Diazônio , Glioblastoma/patologia , Glicólise , Humanos , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Piruvato Quinase/metabolismo , Ácidos Sulfanílicos
3.
Eur J Nucl Med Mol Imaging ; 47(9): 2123-2130, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31938892

RESUMO

PURPOSE: To assess the safety, biodistribution, and radiation dosimetry of the novel positron emission tomography (PET) radiopharmaceutical 1-((2-fluoro-6-[[18F]]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([18F]DASA-23) in healthy volunteers. METHODS: We recruited 5 healthy volunteers who provided a written informed consent. Volunteers were injected with 295.0 ± 8.2 MBq of [18F]DASA-23 intravenously. Immediately following injection, a dynamic scan of the brain was acquired for 15 min. This was followed by serial whole-body PET/MRI scans acquired up to 3 h post-injection. Blood samples were collected at regular intervals, and vital signs monitored pre- and post-radiotracer administration. Regions of interest were drawn around multiple organs, time-activity curves were calculated, and organ uptake and dosimetry were estimated with OLINDA/EXM (version 1.1) software. RESULTS: All subjects tolerated the PET/MRI examination, without adverse reactions to [18F]DASA-23. [18F]DASA-23 passively crossed the blood-brain barrier, followed by rapid clearance from the brain. High accumulation of [18F]DASA-23 was noted in organs such as the gallbladder, liver, small intestine, and urinary bladder, suggesting hepatobiliary and urinary clearance. The effective dose of [18F]DASA-23 was 23.5 ± 5.8 µSv/MBq. CONCLUSION: We successfully completed a pilot first-in-human study of [18F]DASA-23. Our results indicate that [18F]DASA-23 can be used safely in humans to evaluate pyruvate kinase M2 levels. Ongoing studies are evaluating the ability of [18F]DASA-23 to visualize intracranial malignancies, NCT03539731. TRIAL REGISTRATION: ClinicalTrials.gov , NCT03539731 (registered 28 May 2018).


Assuntos
Tomografia por Emissão de Pósitrons , Piruvato Quinase , Compostos de Diazônio , Humanos , Piruvato Quinase/metabolismo , Radiometria , Ácidos Sulfanílicos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA